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A Short Dive into Adiabatic Quantum Computation and Adiabatic Grover

Abstract. Adiabatic Quantum Computation (AQC) provides a different framework for Quantum Computing
(QC) than Gate-based Quantum Computation (GQC). In these notes, an overview of AQC and the Adiabatic
equivalent of Grovers Algorithm is given.
Notation and Assumptions. 0 ∈ N. We work with a complex Hilbert space H for our quantum mechanical
model. L(H) denotes the bounded endomorphisms over H.

1 The Adiabatic Theorem

A quantum system is described by a state |ψ⟩ ∈ H with ∥|ψ⟩∥ = 1. Fixing the position and unfixing the
time, the change of the system is described by the time-dependent Schrödinger equation

∂

∂t
|ψ(t)⟩ = − i

ℏ
H(t) |ψ(t)⟩(1)

with ℏ ∈ R being the reduced Planck constant, for some Hamiltonian path H : R≥0 → L(H), where we
consider a Hamiltonian to be a positive-semidefinite Hermitian operator.

Definition 1. An eigenvalue λ ∈ R of a Hamiltonian H ∈ L(H) is called an energy. A state, associated with
the lowest eigenvalue of H, if it exists, is called a ground state. The other states are called excited states.
Particles/Waves with multiple ground states are called non-degenerate. When the time t is fixed, we also
speak of instantaneous eigenstates of a particle, due to the associated Hamiltonian being fixed in time.

Let ε0(t) ≤ ε1(t) ≤ ... and |εj(t)⟩ for j ∈ N denote eigenvalue-eigenstate pairs of the Hamiltonian of the
associated particle/wave at a time point t.1 The eigenvalue spectrum is used in quantum theory to encode
energies of particles. Denote ∆(t) := ε1(t) − ε0(t) ≥ 0 as the instantaneous ground state gap. We now now
consider the particles behavior in a fixed time frame ending in a time tf ∈ R>0.

Suppose |ψ(0)⟩ is in the ground state of H(0). The adiabatic theorem of QM roughly states, that, if the
Hamiltonian path H changes ”slowly”, that then the resulting state |ψ(tf )⟩ is also a ground state of H(tf ).

We may remark, that this can be generalized for any excited state aswell. Such a slowly changing process can
be implemented in practice. The idea of the theorem is somewhat natural, as the fact, that the Hamiltonian
changes slowly, intuitively coincides with the preservation of the ground state property.
However, the proof, or even the rigorous formulation, is rather hard2. It is not clear, what ”slowly” means
here. The systems Hamiltonian is transformed via small perturbations, for instance. These perturbations
can achieve any Hamiltonian path, Aharonov [2, pp. 51-52] even argued, that we can use them to add
”catalysts”, which can lower the total evolution time.
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1For a finite-dimensional space, one may ignore the remaining infinitely many energies.
2As described by Griffiths [1], but I cannot find the page right now. Not sure, if my physical version of the book is too new

or something.



The Hamiltonian path here that describes the energy changes of the particle over time is, for simplicity, the
linear path given by

H : [0, 1] → L(H), s 7→ (1− s)H0 + sH1(2)
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with H0, H1 ∈ L(H) being the start and final Hamiltonians. The time here is restricted to [0, 1] for nor-
malization, but we can define a schedule s : [0, tf ] → [0, 1], s.t. H ◦ s : [0, tf ] → L(H) describes the actual
physical change of the system. Optimizing the schedule to lower the evolution time tf is desirable.

There are several versions of the adiabatic theorem, we now consider one.

Theorem 1. Consider a quantum system |ψ(·)⟩ : [0, 1] → H initialized in its ground state with a Hamiltonian
path H : [0, 1] → L(H) between H0 := H(0) and H1 := H(1).

• tf ∈ R>0 (wlog. ̸= 0) and s : [0, tf ] → [0, 1] be a schedule.
• H(s) for all s ∈ [0, 1] always have a ground energy.
• εi(s) denote the ith eigenvalue of H(s) with ε0(s) ≤ ε1(s) ≤ ... for s ∈ [0, 1].
• |εi(t)⟩ denote the associated ith eigenvector of H(s).
• P (s) be the projector, that maps into the ground energy eigenroom of ε0(t).
• Ptf (s) = |ψ(t)⟩ ⟨ψ(t)| be the projector onto the simultaneous actual state.
• m(s) be the number of eigenvalues of P (s).
• H(s) be twice continuous-differentiable.
• H(s), Ḣ(s), Ḧ(s) be bounded for any s ∈ [0, 1].
• ∆(s) := ε1(s)− ε0(s) be the ground state energy gap, where min∆ > 0, i.e. the gap never vanishes.

Then, for any s ∈ [0, 1], we have
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∥∥∥Ḧ∥∥∥
∆2

+
7m

√
m
∥∥∥Ḣ∥∥∥2
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See the survey in [2, p. 7]. This version is not very precise, but rather simple to state in comparison to
other versions. The essential idea of AQC is thus to initialize a qubit state |ψ⟩ ∈ CN , starting out with the
Hamiltonian H0. This state is in some ground state of that Hamiltonian. The Hamiltonian is then slowly
perturbed, according to the adiabatic theorem, to obtain a ground state of H1, which represents our solution
Hamiltonian. As for the cost of the evolution, Aharonov et al. [2, p. 3] defined it to be

tf max ∥H∥(4)

As for optimality, there exists the following result: Defining the path length naturally as L :=
∫ t1
t0

∥∥∥Ḣ(t)
∥∥∥ dt,

it holds, that:

tf > O(L/min∆)



Question GQC AQC
Which objects do we modify? States Hamiltonians

How do we modify them? Unitary matrices Slow perturbations
How do we determine the algorithm efficiency? Number and locality of gates tf max ∥H∥

Table 1. Comparing GQC and AQC.

2 Adiabatic Grover

Let n ∈ N≥1, N := 2n. Consider a function f : {0, 1}n → {0, 1} with |f−1(1)| = 1. Let m := f−1(1). We
want to obtain m.
The adiabatic version of Grovers Algorithm requires a Hamiltonian Path between

H0 := EN − |ϕ⟩ ⟨ϕ| H1 := EN − |m⟩ ⟨m|(5)

with |ϕ⟩ := H⊗n |0⟩. Both matrices are clearly Hermitian. It is important to note, that the final Hamiltonian
H1 is our oracle, instead of f . We can also denote H1 = diag(f(0), ..., f(m), ..., f(N − 1)).

We first reason, why this evolution starts in a ground state. Observe, that initializing an n-qubit register to
|ϕ⟩ gives a ground state of H0. First, we have

H0 |ϕ⟩ = |ϕ⟩ − |ϕ⟩ ⟨ϕ|ϕ⟩ = 0(6)

The claim is due to H0 being positive-semidefinite, as we will now prove.

Definition 2 (Positive-Semidefinite and Positive-Definite Matrices). A Hermitian matrix A ∈ Cn×n is called
positive-semidefinite, if x†Ax ≥ 0 for all x ∈ Cn. If the inequality is strict, then it is called positive-definite.

Theorem 2 (Characterization of Positive-Semidefinite Matrices). The following statements are equivalent.
(i) A is positive-semidefinite.
(ii) σ(A) ⊂ R≥0.

where σ(A) denotes the spectrum of A.

For the definition and the proof of the theorem see [3, pp. 86-91]. The positive-semidefiniteness of H0 is not
obvious. Let x ∈ Cn, λ ∈ R. The eigenvalue equation is

H0x = (EN − |ϕ⟩ ⟨ϕ|)x = λx; |ϕ⟩ ⟨ϕ|x = (1− λ)x(7)

This gives

1

N

∑N
i=1 xi
...∑N
i=1 xi

 = (1− λ)

x1
...
xN

(8)

in turn giving the condition

1

N

N∑
i=1

xi = (1− λ)x1 = ... = (1− λ)xN(9)

If
∑N

i=1 xi = 0, then either λ = 1 or x = 0. That concerns the zero eigenvalues. For λ ̸= 1 and x ̸= 0, we
have x1 = ... = xN . If we assume wlog. x1 ̸= 0, then we have

1− λ =
1

N

∑N
i=1 xi
xi

=
1

N

Nx1
x1

= 1(10)

λ = 0 thus yields the only other eigenvalue. We have σ(H0) = {0, 1} with respective eigenroom dimensions
1 and N − 1 via the dimension formula N = rk(H0) + def(H0), where def(H0) := dim(ker(H0)) is called the
defect of the linear map.
As its eigenvalues thus are in R≥0, we conclude, that 0 is the lowest eigenvalue, so |ϕ⟩ is a ground state.



As for H1, it holds, that σ(H1) = {0, 1} with 0 being the energy of |m⟩ and the other eigenstates having
energy 1. This can be read off directly, as H1 is a diagonal Hamiltonian. So when we start adiabatically
evolving from the ground state |ϕ⟩ of H0, we will reach the ground state |m⟩ of H1 via slow permutations in
the time of the adiabatic theorem.

We discuss two such paths.

2.1 Linear Interpolation

We define our path by

H : [0, 1] → CN×N , t 7→ (1− s)H0 + sH1(11)

Which is the simplest continuous Hamiltonian path. We start with the same initial state |ϕ⟩.
Denote |m⊥⟩ :=

√
N

N−1

(
|ϕ⟩ − 1√

N
|m⟩

)
.

...

tf ≫ 3

∆2
min

= 3 ·N(12)

So this schedule does not yield a speedup compared to the classical brute-force algorithm.

2.2 Exponential Ansatz
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