
A Comprehensive Description of the
Quantum HHL Algorithm and its Application

in the Cryptanalysis of the AES

valentinpi9

Student Number: Redacted
Date of Birth: Redacted

Bachelor Thesis
Bachelor of Science

Major in Computer Science

First Supervisor: Redacted
Second Supervisor: Redacted

Freie Universität Berlin, Institute for Computer Science

Date of Submission: January 23, 2023

9E-Mail: valenpi@gmx.de - Website: valentinpi.github.io

mailto:valenpi@gmx.de
https://valentinpi.github.io

Abstract
Systems of linear equations appear almost everywhere in the mathemati-
cal sciences. Let it be machine learning, economic simulations, geometry
or even in the field of cryptography. It is commonly known, that the clas-
sical Gaussian elimination method achieves a runtime of O(N3) for such
a system of N ∈ N≥1 equations and variables. The fastest known clas-
sical approximation algorithm, the so-called conjugate gradient method,
yields a complexity of O(Ns

√
κ log2(1/ε)), where κ ∈ R≥1 is the condition

number of the matrix, s ∈ N its sparsity and ε > 0 the error cap.
In this thesis, we will give a description and a mathematically rigorous
analysis of the quantum algorithm by Harrow, Hassidim and Lloyd (HHL),
which achieves an exponential speedup to a solution to this problem given
several restrictions, to a runtime of about Õ(κ2s4 log2(N)/ε). We further
discuss its improvements and limitations. Our contribution lies in the
explicit description of the smaller auxiliary algorithms involved, as well
as more detailled runtime and error bounds.
Lastly, we describe, how to create simple systems of equations for key
recovery of AES encrypted blocks and shortly present recent results on
the application of HHL for the cryptanalysis of the Advanced Encryption
System (AES) block cipher.

Zusammenfassung
Lineare Gleichungssysteme lassen sich an fast jeder Stelle in den mathe-
matischen Wissenschaften wiederfinden. Sei es im maschinellen Lernen,
ökonomischen Simulationen, in der Geometrie oder in der Kryptographie.
Es ist im Allgemeinen bekannt, dass die klassische Lösungsmethode durch
Gaußsche Eliminierung eine Laufzeit von O(N3) für ein System von N ∈
N≥1 Gleichungen und Variablen besitzt. Der schnellste bekannte klas-
sische Approximationsalgorithmus, die sogenannte Conjugate Gradient-
Methode, besitzt eine Komplexität von O(Ns

√
κ log2(1/ε)), wobei κ ∈

R≥1 die Konditionsnummer der Matrix, s ∈ N die maximale Anzahl der
Einträge pro Zeile und ε > 0 die erlaubte Fehlerschranke ist.
In dieser Arbeit geben wir eine Beschreibung und eine mathematisch rig-
orose Analyse von dem Quantenalgorithmus von Harrow, Hassidim und
Lloyd (HHL), welcher für die Lösung eines linearen Gleichungssystemes
eine exponentielle Beschleunigung, unter mehreren Einschränkungen, zu
einer Laufzeit von etwa Õ(κ2s4 log2(N)/ε) erreicht. Wir diskutieren weit-
erhin die Verbesserungen und Einschränkungen von dem Algorithmus.
Unser Beitrag liegt in der expliziten Beschreibung der kleineren Hilfsalgo-
rithmen, welche involviert sind, sowie detailliertere Laufzeit- und Fehler-
schranken.
Zuletzt beschreiben wir, wie einfache Gleichungssysteme für die Schlüssel-
gewinnung aus mit AES verschlüsselten Datenblöcken formuliert werden
können und präsentieren außerdem kurz neue Ergebnisse in der Anwen-
dung von HHL für die Kryptanalyse von dem Advanced Encryption Sys-
tem (AES) Blockchiffre.

Selbstständigkeitserklärung

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende
Bachelorarbeit selbstständig und ohne Benutzung anderer als der angegebenen
Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich
oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch bei keiner anderen
Universität als Prüfungsleistung eingereicht.

Datum: Unterschrift:

Contents

1 Introduction 1
1.1 Background Knowledge in Quantum Computation . 1
1.2 Finite-Dimensional Hermitian Operator Theory . 2
1.3 Matrix Condition Number and Sparsity . 5
1.4 Finite Polynomial Fields . 6

2 Extensions of the Common Quantum Algorithmic Toolbox 8
2.1 Auxiliary Gates . 8
2.2 Quantum State Generation based on Efficiently Integrable Probability Distributions . . . 9
2.3 Quantum Mechanical Metrics . 12
2.4 Qutrits . 14
2.5 Amplitude Amplification . 16
2.6 Quantum Phase Estimation . 22
2.7 Hamiltonian Simulation . 23

3 The HHL Algorithm 27
3.1 Problem Description and Assumptions . 27
3.2 Overview . 27
3.3 Analysis for Well-Conditioned Matrices . 31
3.4 Relaxations to the Assumptions and Discussion . 47
3.5 Outline of Two Improvements . 52

4 Application on the Cryptanalysis of AES 55
4.1 An Algebraic Description of AES . 55
4.2 The BES Cipher . 58
4.3 A BES Multivariate Equation System for AES . 60
4.4 Overview of Recent Research on the Approach . 62

A Omitted Details 67

B Formula Sheet 69

C Hardness Results 70

List of Algorithms

1 Amplitude Amplification . 20
2 HHL Algorithm . 29

List of Figures

1 A famous cat. She is cute and not a sign of bad luck. She is both completely blacked out
with no life sign, whilst standing upright. .

2 Unit vector rotations, controlled by qubit registers. Here for θF = 3π/4. 9
3 Sketch for understanding the divisions. Here for t = 6 and captions only in the first four

divisions to avoid cluttering the sketch. The vertical axis has no markings as the image
of the function p is drawn solely for illustration. On the right, the associated value of m,
the associated discrete probability space and the corresponding state are denoted. The
arrows on the left illustrate the direction of the inductive algorithm by Grover and Harris.
The part of the area under the curve of p, which gives p21, has been highlighted. 12

4 Rotating the qutrit state |0〉 according to some angles ϕ,ψ ∈ (−π, π] into some state
|ξ〉 ∈ R3 ⊂ C3. Here illustrated for |ξ〉 := 1√

10
(|0〉 + |1〉) + 2√

5
|2〉, thus ϕ = π

4 and

ψ = arcsin
(

2√
5

)
. 16

5 Circuit diagram for the first part of the general QPE algorithm. The t ∈ N≥1 qubits are
used to approximate a binary representation of the eigenvalue phase, as we can see on the
right. The essential point of the first part is to store the vector

⊗2t−1
k=0

(
|0〉+ e2πi(2

k)θ |1〉
)
|b〉 =

1√
2t

∑2t−1
j=0 |j〉U j |b〉, as one can recognize by aligning the binary representation of the

summed up factor in the amplitude exponent with the canonical state for each possible
product taken. Replication of [7, pp. 221-226]. 22

6 Circuit diagram for the general QPE algorithm. 22
7 The described graph for the chess-pattern Hamiltonian (

∑1
j=0

∑1
k=0 |j〉 〈k|)⊗2 ⊗ E2. . . . 24

8 Circuit diagram for the HHL algorithm. On the right, the register states for a perfect
result are presented. We measure a 1, indicating a good result. We have not illustrated
the amplitude amplification. 29

9 Sketch of the amplitudes, here for t = 5 and scaled by 16. 31
10 Sketch of the cumulative amplitude sums, here for t = 5 and scaled by 1. The associated

integral function of the probability distribution p, P , as found in the proof of Theorem 3.5,
is also depicted. 31

11 A line representing [0, 2π(T−1)] with marks for understanding the behavior of the approx-
imations for one δj,k value. We assume an appropriate choice for t, as described in this
text. In this case, the approximation seems to be of poor quality, increasing t will improve
the accuracy as then the interval [2π(k − 1), 2πk] will be split in half and 2π(2k − 1) will
give a better approximation. 32

12 Graph of l↑ and l↓ für t = 5. The x-axis is scaled by 1/T , the y-axis is scaled by 2
and the entire plot is scaled by 2. The vertical lines x = 2π, x = π

2T and x = πT
are marked. In the interval [2π, πT/2], l↑ grows faster than l↓, while being larger at the
interval boundaries. In [πT/2, πT], l↑ is convex, and larger at the boundary points, while
l↓ is concave. The convexity and concavity argument is illustrated by the dotted lines.
These facts conclude l↑ > l↓. The rigorous formulation can be found in the appendix, as
said. 36

13 Sketch of the filter functions. Here an example for a matrix with eigenvalues 1, 4, 7, 10 and
thus κ = 10. The horizontal axis was scaled by 20, the vertical one by 2. One can very
well see the rather sudden drop of g and the simultaneous entry of f in the interval

[
1
2κ ,

1
κ

]
. 38

14 Illustation of the difference between the three components of two different consecutive
states in a VTAA algorithm, where i ∈ [1,m]N is fixed. The branches in the arrows
indicate sums, i.e. e.g. |ψi,0〉 = PHi

|ψi,0〉+ PH⊥
i
|ψi,0〉 . 53

15 AES encryption and decryption block diagram. The inverse versions of the encryption
functions are defined in analogy to them, and will not be of concern to us. 56

List of Tables

1 AES Parameters, according to [48, pp. 13-14]. 55
2 Sizes of equations in the BES system, where we upper bound the occurences of some of

the key schedule equations by letting (Nk, Nr) = (4, 14) wlog.. 61
3 Direct BES system sizes. m ∈ N is the variable count and n ∈ N the equation count each.

Nb = 4 for AES, as previously said. These systems are not yet linearized. 61
4 Direct AES MQ system sizes. Nb = 4 for AES, as previously said. These systems are not

yet linearized. 62
5 Runtimes of the AES key-recovery algorithm proposed by Chen and Gao, taken directly

from [4, p. 26]. The runtime factor is without any asymptotic factors or the squared
condition number. 64

List of Abbreviations

Abbreviation Full Form
AA Amplitude Amplification
AES Advanced Encryption Standard
BCD Binary Coded Decimal
eq. equation
et al. and others (Latin: et alia)
i.e. that is (Latin: id est)
iff if and only if
LCU linear combination of unitaries
LSB least significant bit
MSB most significant bit
NIST National Institute of Standards and Tech-

nology
poset partially-ordered set
QM Quantum Mechanics
s.t. such that
SLE System of Linear Equations
SVD Singular Value Decomposition
VTAA Variable Time Amplitude Amplification
wlog. without loss of generality
wrt. with respect to

List of Notations

Let m,n, q ∈ N≥1 here, if not said otherwise. The following meanings for the symbols are used, if no
other definition is specified.

Notation Explanation
N,Z,Q,R,C The sets of natural, integral, rational, real and complex numbers. 0 ∈ N here.
MP For M a set and P a logical predicate over M , the set {a ∈ M | P (a)}. For

instance, N≥1.; Informal notation for an implication.
x ◦M If x ∈ U for some universe U and M ⊆ U and ◦ : U × U 7→ U , the set

{x ◦ y | y ∈M}
Im(f) For a function f : A→ B with A and B being sets, the image f(A).
ker(f) For a function f : A→ C with A being a set, the preimage of zero f−1(0), i.e.

the kernel.
⊗ Kronecker product, the standard tensor product used here.
' Isomorphy relation.
∼= Isometric isomorphy equivalence relation.
↪→→ Mapped under isomorphism.
∼=
↪→→ Mapped under isometric isomorphism.
[a, b]M For a poset (M,≤) and a, b ∈M , the set {r ∈M | a ≤ r ≤ b}.2
idM For a set M , the identity function idM : M →M,x 7→ x.
A⊗n For p ∈ N≥1 and some A ∈ Cm×p, the tensor product power

⊗
nA.

A∗, At, A† For a matrix A ∈ Cm×n, the associated conjugate, transposed and adjoint
matrices.

Fm×n Set of matrices of format m× n with coefficients from a field F.
Fq The set [0, q − 1]N for q ∈ N≥1.
GF(p) Galois field with p elements, where p ∈ N is prime.
δij Kronecker delta for i, j ∈ N. Defined as δij := (i = j).
En Unit matrix of size n× n.
σy Pauli Y matrix −i |1〉 〈0|+ i |0〉 〈1| [1, p. 168].
|k〉 , k ∈ N kth canonical basis vector of the Hilbert space Cn, where k < n.
rk Matrix rank.
θF , θ ∈ N θF ∈ R is the real number represented by θ in a floating-point-format. For

instance, in IEEE-754, a fixed-point-format or BCD.
|λ〉 , λ ∈ R |λ〉 denotes a canonical basis vector |k〉 of Cn, k ∈ [0, n − 1]N, s.t. kF is

close to λ. When we develop a unitary, that utilizes a λ value, the necessary
conversions are implicitely assumed to be performed.

R[x1, ..., xn] The ring of polynomials with coefficients from a ring R over the variable sym-
bols x1, ..., xn.

Sn−1 The sphere {x ∈ Rn | ‖x‖ = 1} with the standard norm.
∢(·, ·) Angle between two vectors in a euclidian vector space (V, 〈·, ·〉). Defined as

∢(u, v) := arccos
(

⟨u,v⟩
∥u∥∥v∥

)
for u, v ∈ V \ {0} with ‖·‖ being the associated

norm.
ωN ωN := e2πi/N . Looking in a mathematically positive direction on S1, the first

N th complex unit root besides 1.
diag(A1, ..., Ar) For A1,∈ Fm1×n1 , ..., Ar ∈ Fmr×nr for a field F and r,m1, n1, ...,mr, nr ∈ N≥1,

the diagonal matrix with blocks A1, ..., Ar.
U⊥ For a subspace U ⊆ V of a vector space V , the orthogonal complement of U .
E[X] For a discrete finite random variable X : (Ω,Pr) → R over a discrete finite

probability space (Ω,Pr), its expectation value
∑

x∈Ω Pr(X = x)x.
poly(T1, ..., Tn) With runtime terms T1, ..., Tn, for one p ∈ R[x], which depends only on

T1, ..., Tn, the class O(p).
A ≤p B A is polynomially time reducible to B, see Appendix C, for languages A,B ⊆

Σ∗.

Indexing of Vectors and Matrices Vectors in Fn, where F is a field, will always be interpreted
as column vectors. Vector and matrix entries are not zero-indexed, if not said otherwise. Matrices are
indexed column-first. We may also index complex numbers, since C ∼= R2. The bra-ket notation is used
for valid quantum registers, i.e. normalized vectors in Hilbert spaces and their associated functionals.
Otherwise not. We never omit the bra-ket notation to index the vectors. We further use a notation for
generating matrices of form A := (p(i, j))i,j∈m×n ∈ Fm×n. By that, we mean that for any i ∈ [1,m]N,
j ∈ [1, n]N, we have aij = p(i, j), where p : [1,m]N × [1, n]N → F is a function.

Standard Product and Norm We use the general definition from [2, p. 219] for standard products.
The symbols 〈·|·〉 and ‖·‖ are reserved for the complex standard product and its induced norm, defined
as:

〈u|v〉 :=
n∑

i=1

uiv
∗
i ‖u‖ :=

√
〈u, u〉 (0.0.1)

For |u〉 , |v〉 ∈ Cn. Furthermore, the symbol ‖·‖ is also reserved for the operator norm used here, see
Theorem 2.12.

Sets and Operations When considerung a group, ring, field, vector space or another structure, we
often omit the explicit statement of the associated operations.

Switching between Matrices and Tuples Note, that by column-major and row-major, we refer to
the order, in which the entries of a tuple or matrix are mapped to a respective matrix or tuple. For
instance, we may enumerate the vector (0, 1, 2, 3) ∈ R4 in either column-major- or row-major-enumeration
into a 2× 2-matrix, yielding respectively:(

0 2
1 3

)
or
(
0 1
2 3

)
(0.0.2)

Figure 1: A famous cat. She is cute and not a sign of bad luck. She is both completely blacked out with
no life sign, whilst standing upright.

1 Introduction

The main goal of this thesis is to present the quantum algorithm for solving systems of linear equations
proposed by Harrow et al. [3] in 2008 in full detail and in the original formulation. We then apply it to
the cryptanalysis of AES. For that, we shortly present the results by Chen [4] and Ding [5].
This and the next section are dedicated to providing the foundations to this thesis. Note that, although
this thesis is written in English, we will partly give references to German standard literature. The focus
is to present these results following rigorous mathematical sources.
This thesis is divided into four sections. In Section 1, we first introduce necessary mathematical back-
ground knowledge on Hermitian matrices, matrix invertibility criteria and polynomial factor rings. Sec-
tion 2 presents multiple auxiliary quantum algorithms, including Qutrit Rotation, Amplitude Amplifica-
tion, Quantum Phase Estimation and Hamiltonian Simulation. Section 3 then presents a full, rigorous
description of the original HHL algorithm, as described by Harrow et al.. Section 4 closes the thesis by
introducing the AES cipher and linearization techniques, as well as presenting the current state of the
art of the approach.

1.1 Background Knowledge in Quantum Computation

Classical Computers, with which nowadays we are all familiar with, utilize the notion of a logical bit to
process information. In the simplest case, a bit is physically implemented by a small transistor, capable
of storing an electronic current. This allows the physical machine to differentiate between the logical
values 0 and 1 and is the foundation of all other activities in a classical electronic computer.

Quantum Mechanics is a physical theory of microscopically small particles. Such particles exhibit many
interesting properties, such as the so-called particle-wave duality [1, pp. 4-8]. We model quantum
particles as elements of Hilbert spaces, of which we can measure some properties. Such measurable
properties are called observables. A particle is always in a state, which, in turn, is a superposition of
several special states. Let us dive into a little more detail.

For that, we follow [6, pp. 29-39]. Suppose t0 ∈ R≥0 is the starting point of our investigation of a very
small particle, take it to be an electron or a photon, which is in a state |ψ(t)〉 at time point t ∈ [t0,∞).
The state is an element of a Hilbert space H. Especially, |ψ(·)〉 : [t0,∞)→ H is thus the map capturing
the development of the state over time. Let us assume H = C2 for convenience for the partial derivative
below. There are general operator derivatives [2, p. 126 ff.], but here, we will not get into that. In Borns
statistical interpretation of the quantum mechanical wave function, ‖|ψ(t)〉‖ = 1 must hold at all times
[1, pp. 3–5], aligning with the stochastical nature of quantum particles. The particle state especially
obeys the following version of the fixed-position, time-dependent Schroedinger equation [6, p. 38]:

i
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 (1.1.1)

H is an operator, called the Hamiltonian of the particle, and represents its observable energy with
its eigenvalues. It is often the sum of potential and kinetic energy, each also being represented by an
operator. Furthermore, the time postulate [6, p. 38] holds in the theory, stating that there is a map
U : [t0,∞)→ {O : H → H | O is a unitary operator}, satisfying:

|ψ(t)〉 = U(t) |ψ(t0)〉 (1.1.2)

Also, U(t0) = idH for sure. So, according to the time postulate, quantum states are only transformed
unitarily. One may take this postulate to be the starting point for the idea of quantum computation.

Quantum computers differ from classical computers. Here we utilize the notion of particles, that can
form superpositions of bit values. For this thesis, the physics of these systems is less interesting to
us, than their computational consequences, and we will not discuss the implementation of quantum
hardware. To us, a so-called qubit is capable of spanning a superposition between the two classical bit
values 0 and 1. This system is represented by a complex vector in the Hilbert space C2, being the
complete complex Euclidian vector space of 2-complex-component vectors. These systems, as mentioned

1

above, can only be transformed unitarily to us. Using the results of quantum mechanics, we hope to
find more efficient algorithms for solving tough computational problems. It has been shown by authors
such as Deutsch, Jozsa, Bernstein, Vazirani, Grover and Shor, that quantum computers, for some special
problems, are indeed able to produce exponential speedups to their classical counterpart algorithms [7].
It has also been shown, that quantum computers and classical computers are computationally equivalent,
as classical systems can simulate quantum computers and vice versa due to Toffoli-gates [7, p. 29 f.].
This also means, that classical issues like the halting problem cannot be resolved with this new model.
The complexity-theoretic landscape of classical and quantum complexity classes is much more complex.
In this thesis, we will discuss an approach to solving SLEs. As in classical computation, we may also use
the notion of gates to describe algorithms on qubits and qubit registers, with these gates corresponding
to unitary matrices.

With the gate model of quantum computing, a framework was given for non-physicists to design quantum
algorithms by applying unitary transformations to a quantum state. Despite that, research in the field
of Quantum Computer Science is still partly dominated by terminology from QM. We will occasionally
talk about Hamiltonians in this thesis, although we will not explicitely talk about energies of particles,
unlike adiabatic quantum computation, for instance. This specific term is due to the above mentioned
Schroedinger equation, where H is always Hermitian. Physicists use the terms Hermitian operator and
Hamiltonian synonymously.

This bachelor thesis is designed to be mostly self-sufficient, besides a required background in linear
algebra, analysis and quantum computational principles.

1.2 Finite-Dimensional Hermitian Operator Theory

This subsection will introduce Hermitian matrices and present some important mathematical results.
Some examples will also be mentioned. Throughout this subsection, let m,n ∈ N≥1. As we will talk
about quantum computing, we shall revisit the definition of unitary matrices first, after some remarks
on our terminology.
Remark 1.1. We first visit a few definitions from functional analysis. Complex matrices in Cm×n are
linear maps between the vector spaces Cn and Cm, which are in turn, due to the standard norm, Banach
spaces [2, p. 2]. Especially, complex matrices are continuous [8, p. 35], meaning that we can also call
them by their functional-analytic term operators [2, p. 49]. Operators, that map into scalar spaces, such
as C, are also called functionals.

Definition 1.2. An invertible matrix U ∈ Cn×n is called unitary, if U−1 = U†.

Example 1.3. Using the exponential form of the sine and cosine functions from Definition B.2 and the
trigonometric pythagoras from Theorem B.3, one may easily verify that the two-dimensional rotation by
an angle ϕ ∈ [0, 2π) is unitary:(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)†

=

(
cos2(ϕ) + sin2(ϕ) 0

0 sin2(ϕ) + cos2(ϕ)

)†

= E2 (1.2.1)

Theorem 1.4. Let U ∈ Cn×n with rows u1, ..., un ∈ Cn and columns v1, ..., vn ∈ Cn. The following are
equivalent:

• U is unitary.

• {u1, ..., un} is an orthonormal basis of Cn.

• {v1, ..., vn} is an orthonormal basis of Cn.

For the proof, see [9, pp. 351-352]. Remember, that unitary matrices represent steps in quantum
algorithms.

Theorem 1.5. Unitary matrices are length-preserving/isometric, meaning that for any unitary U ∈
Cn×n and x ∈ Cn it holds that ‖Ux‖ = ‖x‖. Especially they preserve the standard product, meaning
that for u, v ∈ Cn, we have 〈Uu,Uv〉 = 〈u, v〉.

2

For the proof, see [9, pp. 350-351]. We now introduce Hermitian matrices.

Definition 1.6. We call a normalized eigenvector |v〉 ∈ Cn of a matrix U ∈ Cn×n an eigenstate.

Definition 1.7. A matrix H ∈ Cn×n is called Hermitian3, if H = H†. We also call Hermitian matrices
Hamiltonians.

Example 1.8. Consider the following matrix:(
1 i
−i 2

)†

=

(
1 −i
i 2

)∗

=

(
1 i
−i 2

)
(1.2.2)

Theorem 1.9. Every Hermitian matrix H ∈ Cn×n possesses at most n eigenvalues, with all of them
being real. There is an orthonormal basis of Cn, which is composed entirely of eigenvectors of H, also
called an eigenbasis.

For the proof see [9, pp. 360-362]. It is clear that, since eigenvectors are by definition non-zero, we can also
normalize the eigenvectors mentioned to a length of one and thus obtain an orthonormal basis. In general,
any basis of eigenvectors is called an eigenbasis. With the Gram-Schmidt-orthonormalization-procedure
[10, p. 185] however, an orthonormal basis can be acquired algorithmically from a non-orthonormal
eigenbasis. Note further, that some eigenstates may also be associated with the zero eigenvalue.
Example 1.10. The following Hermitian matrix has eigenvalues 2 and 0 with corresponding eigenvectors
|0〉 and |1〉, which form an eigenbasis of C2: (

2 0
0 0

)
(1.2.3)

Theorem 1.11 (Spectral Decomposition). Given a Hermitian H ∈ Cn×n with eigenvalues λ1, ..., λn ∈ R
and eigenbasis |v1〉 , ..., |vn〉 ∈ Cn, it holds that:

H =

n∑
i=1

λi |vi〉 〈vi| (1.2.4)

Proof. It suffices to show the statement for the vectors in the eigenbasis. Since the vectors are orthogonal,
we observe for any j ∈ [1, n]N:

n∑
i=1

λi |vi〉 〈vi|vj〉 = λj |vj〉 = H |vj〉 (1.2.5)

■

Corollary 1.12. If the Hermitian matrix in Theorem 1.11 is invertible, the eigenvalues are all non-zero
and the spectral decomposition of H−1 is given by:

H−1 =

n∑
i=1

λ−1
i |vi〉 〈vi| (1.2.6)

Proof. We prove the first statement by contradiction. With reordering, we may assume wlog., that
λ1 = 0. Then H |v1〉 = λ1v1 = 0 = H |0〉, contradicting the bijectivity of H. � We observe, that
H
(∑n

i=1 λ
−1
i |vi〉 〈vi|

)
|vk〉 = λkλ

−1
k |vk〉 = |vk〉 for all |vk〉 by the above formula, proving equality. ■

This theorem allows us to write a given Hermitian matrix more compactly. It can surely also be used for
generally any matrix, where the eigenvalues involved may then be complex. Another useful decomposition
of matrices is presented in the following.

3After Charles Hermite.

3

Theorem 1.13 (Outer Product Form of the SVD). Let A ∈ Cm×n and r := rk(A). There are so-called
singular values σ1, ..., σr ∈ R>0 with σ1 ≥ ... ≥ σr and orthonormal systems, comprised of so-called
singular vectors, {|u1〉 , ..., |ur〉} ⊂ Cm and {|v1〉 , ..., |vr〉} ⊂ Cn, such that:

A =
r∑

j=1

σj |uj〉 〈vj |

The proof is given in [11, p. 153-157].
Corollary 1.14 (SVD). Any matrix A ∈ Cm×n can be written in the form

A = UΣV † (1.2.7)

where Σ := diag(σ1, ..., σr, 0, ..., 0) ∈ Cm×n with σ1, ..., σr ∈ R>0 being the singular values of A and
U ∈ Cm×m and V ∈ Cn×n being unitary.

Proof. Consider the outer form SVD of A, see Theorem 1.13. Extend {|u1〉 , ..., |ur〉} and {|v1〉 , ..., |vr〉}
to an orthonormal basis each for Cm and Cn respectively via {|u1〉 , ..., |um〉} and {|v1〉 , ..., |vn〉}. The
computation

A =

r∑
j=1

σj |uj〉 〈vj | =
(
|u1〉 · · · |um〉

)
diag(σ1, ..., σr, 0, ..., 0)

〈v1|. . .
〈vn|

 =: UΣV † (1.2.8)

which we can directly verify using the matrix product gives the statement. ■

We cannot invert non-invertable matrices. The following definition gives us a different notion of invert-
ibility.

Definition 1.15 (Moore-Penrose Pseudoinverse). Let A ∈ Cm×n possess the SVD A = UΣV † with
singular values σ1, ..., σr ∈ R>0. Then we define the Monroe-Pense Pseudoinverse to be

A+ := V Σ+U† (1.2.9)

with Σ+ := diag
(

1
σ1
, ..., 1

σr
, 0, ..., 0

)
.

This definition follows [12, pp. 41-42]. For m = n and A being invertible for instance, we can verify
A+ = A−1 via AA+ = UΣV †V Σ+U † = Em.

Definition 1.16. The matrix exponential function is defined by:

exp: Cn×n → Cn×n,M 7→
∞∑
k=0

Mk

k!
(1.2.10)

We shall also note exp(M) =: eM .

Note that this series is a multidimensional limit. The following lemma gives us the convergence and two
other properties.
Lemma 1.17 (Properties of the matrix exponential function). Let M,N ∈ Cn×n. The following holds:

(i) exp(0) = En.

(ii) exp(M) converges.

(iii) If MN = NM , then exp(M +N) = exp(M) exp(N).

The proof can be found in [13, p. 9]. The previous statements and definitions are generalizations of
known facts from the study of euclidian/unitarian vector spaces. Now we want to study the problem of
generating a unitarian matrix with a Hermitian matrix.

Theorem 1.18. For any Hermitian matrix H ∈ Cn×n and t ∈ R, eiHt is unitary.

4

Remark 1.19. The parameter t is introduced, as the unitary described may be interpreted as a time
evolution of a particle, as described in the introduction.
We shall demonstrate the notion of the matrix exponential by giving a proof to this statement. Without
proof, note that taking the transpose of a matrix and taking the conjugate are both continuous mappings,
meaning that we can move these operations inside of the matrix exponential series.

Proof. In the following, we move the adjunction inside of the series. Since taking the adjoint is compatible
both with addition and multiplication in each matrix entry, it holds:

(
eiHt

)†
=

∞∑
k=0

(−1)kik(H†)ktk

k!
= e−iH†t = e−iHt (1.2.11)

Since H = H† and thus HH† = H†H, we can use Lemma 1.17 and conclude:

eiHt
(
eiHt

)†
= eiHt−iHt = e0 = En (1.2.12)

■

Theorem 1.20. Suppose U ∈ Cn×n is unitary with eigenvalue λ ∈ C. Then there is a number θ ∈ [0, 1)
with λ = ei2πθ, called the phase of the eigenvalue.

Proof. It suffices to show that the magnitude of the eigenvalue is 1. Let v be an eigenvector to λ. With
Theorem 1.5, we have ‖Uv‖ = ‖λv‖ = |λ|‖v‖ = ‖v‖ and |λ| = 1, since by definition v 6= 0. ■

Theorem 1.21. If a Hermitian matrix H ∈ Cn×n has eigenvalue λ with eigenvector v, then the associ-
ated unitary matrix exponential eiHt, t ∈ R, has eigenvalue eiλt with eigenvector v.

Proof. We have

eiHtv =

∞∑
k=0

iktk

k!
Hkv =

∞∑
k=0

ikλktk

k!
v = eiλtv (1.2.13)

■

Remark 1.22. This theorem shows that an eigenbasis of eiHt is given by an eigenbasis ofH. It is important
to note, that, due to Theorem 1.11 and Theorem 1.21, we can write the spectral decomposition of eiHt

as:

eiHt =
n∑

i=1

eiλit |vi〉 〈vi| (1.2.14)

The proof is analogous to the one of Theorem 1.11.

1.3 Matrix Condition Number and Sparsity

The main tool for quantifying the toughness of a matrix invertibility problem is the condition number.
There are multiple ways of defining the condition number, we use the following definition following Lyche
[11]

Definition 1.23. The condition number κ(A) ∈ R≥1 of a matrix A ∈ Cm×n with singular values
σ1, ..., σr ∈ R>0, r := rank(A) is defined by

κ(A) :=
σmax(A)

σmin(A)
, where σmax(A) := max{σ1, ..., σr}, σmin(A) := min{σ1, ..., σr} (1.3.1)

Furthermore, we set for m = n, A invertible and, possibly duplicate, eigenvalues λ1, ..., λn ∈ C \ {0} of
A the condition number as

κ(A) =
λmax(A)

λmin(A)
, where λmax(A) := max{|λ1|, ..., |λn|}, λmin(A) := min{|λ1|, ..., |λn|} (1.3.2)

5

We can also set κ(A) := ‖A‖‖A+‖ using the Moore-Penrose pseudoinverse, see Definition 1.15, so the
concrete use of condition numbers depends on the current context.
Remark 1.24. Note, that

• κ(A) ≥ 1 always holds, due to 0 < σmin(A) ≤ σmax(A) and for the second part of the definition
analogously. Especially, 0 < 1

κ(A) ≤ 1.

• if κ(A) is very large, then we call A ill-conditioned.

Example 1.25. Consider a diagonal matrix D with diagonal elements d11, ..., dnn ∈ C ̸=0. Then κ(D) =
maxi∈[1,n]N |dii|/mini∈[1,n]N |dii|, which allows us to increase the condition arbitrarily. Consider for in-
stance for n ≥ 2 and j ∈ N the matrix D := 2j |0〉 〈0| +

∑n−2
i=1 |i〉 〈i| + 2−j |n− 1〉 〈n− 1|. One may ask

the question, whether there are non-trivial ill-conditioned matrices.
Example 1.26. One particularly interesting class of examples are Hilbert matrices, where the n-th Hilbert
matrix is defined as

Hn :=

(
1

i+ j − 1

)
i,j∈n×n

(1.3.3)

This construction solves the question from Example 1.25: Hn is clearly Hermitian and it can also be
shown, that it is invertible by explicitely giving the inverse as in [14, pp. 302, 306]. [15, p. 51] gives
the bound λmin(Hn) ∈ Θ(

√
n(1 +

√
2)−4n) and, following the result cited in [16, p. 111], we also have

λmax(Hn) ∈ Θ(π). So

κ(Hn) ∈ Θ

(
(1 +

√
2)4n√
n

)
(1.3.4)

which gives the statement that this matrix is very ill-conditioned.

Definition 1.27. A matrix A ∈ Cm×n is called s-sparse, with s ∈ N, if there are at most s many
non-zero entries per row or column. A is called efficiently row-computable, if there is an algorithm, that,
for a given row or column index respectively, computes the corresponding indices of the non-zero entries
in time O(s).

Definition 1.28. We call an invertible, Hermitian, positive-semidefinite, sparse, efficiently row-com-
putable matrix with condition number κ ∈ R≥1 and for all eigenvalues λ ∈ R>0, that

1

κ
≤ λ ≤ 1 (1.3.5)

well-conditioned.

1.4 Finite Polynomial Fields

This subsection is dedicated to presenting fields of polynomials, which are formed over finite fields. We
use the book by Fischer [17] for the necessary algebra. Recall the formal details of a group [17, p. 5], a
ring [17, pp. 171-172], a field [17, p. 174], polynomial rings [17, pp. 183-186], an ideal and generating
an ideal [17, p. 206].

Definition 1.29. Let K be a field and p ∈ K[x]. The factor ring K[X]/(p) is composed of the set
{q+(p) | q ∈ K[X]} with the operations (q+(p))+ (q′ +(p)) := (q+ q′)+ (p) and (q+(p)) · (q′ +(p)) :=
q · q′ + (p) for q, q′ ∈ K[X].

Here, (p) = {qp | q ∈ K[x]} denotes the ideal generated by p. For further information and a more precise
description with proof, see [17, p. 208]. Here, we use the common calculation techniques for taking
modulos with polynomials via polynomial division, as also described in [17, p. 188]. Furthermore, as
taking the modulo is unique, we may choose representants of the elements in K[x]/(p) via the condition
deg(q) < deg(p). This, with an additional result, gives the following result.

6

Theorem 1.30. If p ∈ K[x] is irreducible, then K[x]/(p) is a field. If K is finite, then |K[x]/(p)| =
|K|deg(p).

For the proof of the first part of the statement, we refer to [17, p. 313]. For the second part, consider

{q + (p) | q ∈ K[x]} = {q + (p) | q ∈ K[x] ∧ deg(q) < deg(p)} (1.4.1)

via the uniqueness of polynomial division.
Corollary 1.31. The factor rings GF(2)[x]/(x8 + x4 + x3 + x + 1) ∼= F28 and F28 [x]/(x

4 + 1) ∼= F4
28 are

fields.
Note, that GF(2) is a field because 2 is prime. Due to the isomorphism to F28 , it formally makes sense
to speak of GF(28) as a field, although 28 is not prime. Another factor ring that will be of interest later
on is .
Example 1.32. We shall give a short example for polynomial multiplication in finite fields and the matrix
representation of a multiplication with a fixed polynomial. Consider the field GF(2)8[x]/(x4 + 1). We
have for instance

(3x3 + x2 + x+ 2) · x3 mod (x4 + 1) = 2x3 + 3x2 + x+ 1 (1.4.2)

The multiplication to obtain the result here is done via polynomial division in R[x]. We obtain

(
3x6 + x5 + x4 + 2x3

)
:
(
x4 + 1

)
= 3x2 + x+ 1 +

2x3 − 3x2 − x− 1

x4 + 1− 3x6 − 3x2

x5 + x4 + 2x3 − 3x2

− x5 − x
x4 + 2x3 − 3x2 − x

− x4 − 1

2x3 − 3x2 − x− 1

(1.4.3)

Since −3 = 3 and −1 = 1 in GF(2)8, we have the result. Especially, as polynomial multiplication is
linear, we can even form a matrix to compute these results faster. It suffices to compute the product
with {x3, x2, x, 1}. In this case, the matrix is exactly

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (1.4.4)

The coefficients for x3, which can be found in the first row, were computed above.

7

2 Extensions of the Common Quantum Algorithmic Toolbox

The HHL algorithm requires the reader to have a rather large amount of preliminary knowledge. We
shall introduce a set of common tools and their current state of the art, in the same sense as Barak [18,
p. 415] referred to the quantum algorithmic toolbox. Let n ∈ N≥1 throughout this section. Recall some
the common gates, that current books [6, 7, 19] on quantum computer science using the unitary gate
model of quantum computation present:

EN := (δij)i,j∈N×N QFTN :=
(
ω
(i−1)(j−1)
N

)
i,j∈N×N

H :=
1√
2

(
1 1
1 −1

)
NOT :=

(
0 1
1 0

)
(2.0.1)

Here is N := 2n. Recall, that classical functions can be efficiently simulated using a unitary of form
|x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 for a function f : Fm

2 → Fn
2 with m ∈ N≥1. Recall the concept of entangled states

from [7, p. 95-96].
Remark 2.1. When we present a quantum algorithm using an algorithm description, we normally write
register tensor product terms, for instance |µ〉 |ν〉 = |µ〉⊗|ν〉, where |µ〉 and |ν〉 are some quantum states.
Our steps can lead to an entanglement of the registers, deeming this notation to be false statements, but
we shall ignore that for convenience. One may imagine a step as a application of a single large unitary,
that affects all states involved.

2.1 Auxiliary Gates

Swapping Qubits

When designing a quantum algorithm, one often needs to append auxiliary qubits for other calculations.
It is often not clear, whether we can discard the auxiliary qubits afterwards. One necessary requirement
for that is, that our current working state is not entangled with the auxiliary state. We call the process
of preparing an auxiliary state for removal uncomputing. The following gate assists us in that task:

Definition 2.2. The unitary SWAP-gate is defined by:

SWAP: C2 → C2, |x〉 |y〉 7→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 |x〉 |y〉 = |y〉 |x〉 (2.1.1)

One may quickly observe the unitarity and correctness. By definition, the gate acts on constantly many
qubits and is thus local and efficiently implementable. Successive uses of this gate allow us to uncompute
multiple qubits.

Rotating Qubits

We present lemma 4 at [12, p. 25], with which we now introduce a quantum gate for the so-called
controlled rotation of a qubit. We can imagine that as rotating the unit vector |0〉 by some angle in the
Gaussian plane, see Figure 2. The mentioned paper cites this theorem for a fixed angle, but it is clear
from the proof, that this can be generalized for every d-bit represented real number, d ∈ N≥1.
We will now use our notations for floating-point-values. In case of a format like IEEE-754, the proof of
the efficient implementability of the following theorem may be a bit, perhaps in form of quite a few more
qubits, harder4.
Lemma 2.3 (Controlled Rotation). For a fixed d ∈ N≥1, there is an with O(d) local gates efficiently
implementable unitary that achieves for d-bit representations of angles θ:

CRd : C2d+1

→ C2d+1

, |θ〉 |0〉 7→ |θ〉 (cos(θF) |0〉+ sin(θF) |1〉) (2.1.2)

We call it the gate for controlled rotations.
4Including special cases like infinity or NaN, of course.

8

Proof. We give a detailled version of the proof in the paper of Dervovic et. al.. Note that there is one
slight subtilty: The unitary that is given in the paper is not fully correct. In the unitary, we must denote
the real number, that is represented by the finite-bit representation. Let

CRd :=
∑
θ∈Fd

2

|θ〉 〈θ| ⊗ exp(−iθFσy) =


e−i·0F ·σy 0 . . . 0

0 e−i·1F ·σy . . . 0
...

...
0 0 . . . e−i·(2d−1)F ·σy

 (2.1.3)

Note that, in the definition, θ is a bitvector and interpreted as its associated natural number. For any
|θ〉 ∈ Fd

2, it holds that:

CRd |θ〉 |0〉 = |θ〉 exp(−iθFσy) |0〉 = |θ〉 exp
(

0 −θF
θF 0

)
|0〉 (1)= |θ〉 (cos(θF) |0〉+ sin(θF) |1〉) (2.1.4)

(1) We use Definition 1.16 and Theorem B.1 to obtain

exp

(
0 −θF
θF 0

)
=

∞∑
k=0

1

k!

(
0 −θF
θF 0

)k

(2.1.5)

=

∞∑
k=0

1

(2k)!

(
0 −θF
θF 0

)2k

+

∞∑
k=0

1

(2k + 1)!

(
0 −θF
θF 0

)2k+1

(2.1.6)

=

∞∑
k=0

1

(2k)!

(
(−1)kθ2kF 0

0 (−1)kθ2kF

)
+

∞∑
k=0

1

(2k + 1)!

(
0 −(−1)kθ2k+1

F
(−1)kθ2k+1

F 0

)
(2.1.7)

=

(
cos(θF) − sin(θF)
sin(θF) cos(θF)

)
(2.1.8)

To observe the claimed runtime, we give a high level description of a possible implementation. For any
basis state |θ〉, we may define a local unitary rotation, as in Example 1.3, for each bit of the representation,
successively rotating the ancilla bit by some degrees each time. This does not violate the correctness,
as the rotation map in the plane is linear. It is clear, that we only require d such gates and thus O(d)
many local unitary gates. ■

|θ〉 ∈ C2d ; |0〉

|1〉

θF

Figure 2: Unit vector rotations, controlled by qubit registers. Here for θF = 3π/4.

2.2 Quantum State Generation based on Efficiently Integrable Probability Distributions

Problem 2.4. (Quantum State Generation) Suppose one is given an initial state |ψ〉 ∈ CN and another
state

∑T−1
τ=0 ατ |τ〉. Give an efficient quantum algorithm, that performs the map |ψ〉 7→

∑T−1
τ=0 ατ |τ〉.

This problem has been studied extensively. Approaches include the most direct method of successive
rotation of the initial state into the target state [20, 21], which in both algorithms requires an exponen-
tial runtime. Aharonov et al. [22] have studied the problem in the framework of Adiabatic Quantum

9

Computation, a different framework for quantum algorithms using the so-called Adiabatic theorem from
QM [1, p. 426 ff.]. There are no hardness results yet, to my knowledge. There is a simple combinatorial
argument, that speaks against the existence of such circuits for any state, if we want to use a predefined
set of finitely many gates [7, pp. 198-200]. One could say that no finite system of gates is complete wrt.
efficient quantum state generation. Consider the following theorem with contained proof.

Theorem 2.5. Let f, g ∈ N≥1. Using g many efficient n-qubit-gates, each acting on at most f qubits,
one can generate at most

(
n
f

)g
m ∈ O(nfgm) states using m gates from |0〉.

We shall discuss a classical paper from 2002 by the researchers Grover and Rudolph [23]. It focuses on
the case, where the coefficients ατ , τ ∈ [0, T − 1]N are given by efficiently integrable probability density
functions.

Definition 2.6. Let I ⊆ R, I 6= ∅, be compact and connected. We call a Riemann-integrable function
f : I → R efficiently integrable, if for any x0, x1 ∈ I with x0 ≤ x1, we can compute or at approximate∫ x1

x0
f in polynomial time.

The following theorem summarizes the result.

Theorem 2.7 (Quantum State Generation using Efficiently Integrable Probability Distributions). Let
xm,i
L := i/2m, xiR := (i + 1)/2m for any m ∈ N≥1, i ∈ [0, 2m − 1]N. For an arbitrary quantum state∑T−1
τ=0 ατ |τ〉 with t ∈ N≥1, T := 2t, s.t. there is a classically efficiently integrable probability density

function p : [0, 1] → [0, 1] with ατ =
√∫

[xt,τ
L ,xt,τ

R]
p, there is a quantum algorithm, that solves the state

generation problem |0〉 7→
∑T−1

τ=0 ατ |τ〉 up to an arbitrary precision using some number of helper qubits,
whilst being polynomial in t.

Proof. The squared amplitude magnitudes of our goal quantum state {|ατ |2 | τ ∈ [0, T − 1]N} form a
discrete probabiliy distribution. The probability space corresponds to the tuple ([0, T − 1]N,Pr) with
Pr : [0, T − 1]N → [0, 1], τ 7→ |ατ |2. We perform t successive and even divisions of the interval [0, 1] and
associate with each of these t + 1 intervals a probability distribution {pmi | i ∈ [0, 2m − 1]N}, where
m ∈ [0, t]N and:

pmi :=

2t−m(i+1)−1∑
τ=2t−mi

ptτ (2.2.1)

Note that p00 = 1, ptτ = |ατ |2 by construction and especially:

2t−m(i+1)−1∑
τ=2t−mi

ptτ =

2t−m(i+1)−1∑
τ=2t−mi

∫ xt,τ
R

xt,τ
L

p =

∫ xm,i
R

xm,i
L

p (2.2.2)

Since p is classically efficiently computable, we can use our knowledge from quantum computability
theory. We can construct a set of functions fm as follows:

fm : [0, 2m − 1]N → [0, 1], i 7→

∫ x
m,i
L

+x
m,i
R

2

xm,i
L

p(x) dx∫ xm,i
R

xm,i
L

p(x) dx

(1)
=

∫ xm+1,2i
R

xm+1,2i
L

p(x) dx∫ xm,i
R

xm,i
L

p(x) dx
=
pm+1
2i

pmi
(2.2.3)

(1) By definition: (xm,i
L + xm,i

R)/2 = (i+ i+ 1)/2m+1 = xm+1,2i
R , xm,i

L = 2i/2m+1 = xm+1,2i
L .

The idea is to extend some current m-qubit register, that is initialized with amplitudes from the target
distribution, by one qubit each time. Wlog., we may assume m ≥ 1 for the indices in the following
calculations. If we have not initialized any qubit register yet, we can still apply the following analogously.
Assume that we have already initialized this distribution-based quantum state for m < t many qubits
and are not finished, meaning that we have a register:

2m−1∑
i=0

√√√√2t−m(i+1)−1∑
τ=2t−mi

pτ |i〉 =
2m−1∑
i=0

√
pmi |i〉 (2.2.4)

10

Denote the unitary:

Ufm : C2m+d

→ C2m+d

, |x〉 |y〉 7→ |x〉
∣∣∣y ⊕ arccos

(√
fm(x)

)〉
=: |x〉 |y ⊕ θx〉 (2.2.5)

Where d ∈ N≥1 is an arbitrary amount of auxiliary qubits and the exclusive disjunction is taken bitwise.
Also note that the computed arccos and √... functions are approximations of the corresponding real-
valued functions. We leave this part to numerical mathematicians and add an additional qubit to this
register and perform the computation:

2m−1∑
i=0

√
pmi |i〉 |0...0〉 |0〉

Ufm × E27−−−−−−−−−−−−−−→
2m−1∑
i=0

√
pmi |i〉 |θi〉 |0〉 (2.2.6)

E2m × CRd7−−−−−−−−−−−−−−→
2m−1∑
i=0

√
pmi |i〉 |θi〉 (cos(θi) |0〉+ sin(θi) |1〉) (2.2.7)

U†
fm
× E2

7−−−−−−−−−−−−−−→
2m−1∑
i=0

√
pmi |i〉 |0〉 (cos(θi) |0〉+ sin(θi) |1〉) (2.2.8)

E2m+d−1 × SWAP7−−−−−−−−−−−−−−→
2m−1∑
i=0

√
pmi |i〉 |0〉 (cos(θi) |0〉+ sin(θi) |1〉) |0〉 (2.2.9)

(1);
2m−1∑
i=0

√
pmi |i〉 (cos(θi) |0〉+ sin(θi) |1〉) |0〉 (2.2.10)

=

2m−1∑
i=0

√
pmi |i〉

(√
fm(i) |0〉+

√
1− fm(i) |1〉

)
|0〉 (2.2.11)

(1) We perform the previous swap operation d− 1 additional times to push out the remaining helper
bits.

Since we uncomputed the helper register, it can be reused for other tasks. Although it is not obvious,
the following computation shows that this corresponds to our target state.

2m−1∑
i=0

√
pmi |i〉

(√
fm(i) |0〉+

√
1− fm(i) |1〉

)
=

2m−1∑
i=0

√
pmi |i〉

√pm+1
2i

pmi
|0〉+

√
pmi − p

m+1
2i

pmi
|1〉


(2.2.12)

(1)
=

2m−1∑
i=0

√
pmi |i〉

√pm+1
2i

pmi
|0〉+

√
pm+1
2i+1

pmi
|1〉

 (2.2.13)

=

2m+1−1∑
i=0

√
pm+1
i |i〉 (2.2.14)

(1) Just to be precise, we calculate this by definition. Some index play yields:

pmi − pm+1
2i =

∑2t−m(i+1)−1
τ=2t−mi pτ −

∑2t−m−1(2i+1)−1
τ=2t−m−12i pτ =

∑2t−mi+2t−m−1
τ=2t−mi pτ −

∑2t−mi+2t−m−1−1
τ=2t−mi pτ

(2.2.15)

=
∑2t−mi+2t−m−1

τ=2t−mi+2t−m−1 pτ =
∑2t−m−1(2i+2)−1

τ=2t−m−1(2i+1) pτ = pm+1
2i+1 (2.2.16)

Which was the desired state. So the trick here is to use the angle approximation as an angle in a rotation,
but by that we introduce it as an amplitude, which gives the desired result.
All gates are efficiently implementable. Every iteration requires polynomial time. In total, we iterate t
times, concluding the claimed runtime for d ∈ O(1). ■

Remark 2.8. One may notice

11

• one remarkable aspect of quantum computing also shows in this proof: Each construction iteration,
the superposition of states gets doubled in O(1) quantum runtime. This choice of the clock register
coefficients is also due to the error analysis.

• that the requirement of efficient integrability may be relaxed by the requirement of efficient inte-
grability over the parts of the interval divisions considered.

We restrict ourselves to the interval [0, 1] in both domain and image for simplicity and the procedure, but
one can think about generalizing the result by adjusting the interval division and possibly introducing
special indices for subintervals starting in −∞ or ending in ∞.
Remark 2.9 (Discussion and Outlook). The proof of the above theorem from Grover and Rudolph shows,
that, we can, in principle, construct any arbitrary quantum state, given the coefficients. A general, but
inefficient integration can be achieved by the classical function just summing up the coefficients of the
contained smallest intervals of level t in the current subinterval. Efficient schemes, such as utilizing binary
trees, which may remind a computational geometrician of interval trees [24, p. 220-226], may allow for
the logarithmic lookup of these sums, but such a data structure itself will still require O(N log(N)) space
complexity. The idea of employing tree-like structures has been studied in a PhD thesis [12, pp. 23-27].

p(x)

0 1
x

...

p00

p10 p11

p20 p21 p22 p23

p30 p31 p32 p33 p34 p35 p36 p37

m = 0, ([0, 0]N, i 7→ p0i),
∑0

i=0 p
0
i |i〉

m = 1, ([0, 1]N, i 7→ p1i),
∑1

i=0 p
1
i |i〉

m = 2, ([0, 3]N, i 7→ p2i),
∑3

i=0 p
2
i |i〉

m = 3, ([0, 7]N, i 7→ p3i),
∑7

i=0 p
3
i |i〉

...

m = t, ([0, 2t − 1]N, i 7→ pti),
∑T−1

i=0 pti |i〉

Figure 3: Sketch for understanding the divisions. Here for t = 6 and captions only in the first four
divisions to avoid cluttering the sketch. The vertical axis has no markings as the image of the function p
is drawn solely for illustration. On the right, the associated value of m, the associated discrete probability
space and the corresponding state are denoted. The arrows on the left illustrate the direction of the
inductive algorithm by Grover and Harris. The part of the area under the curve of p, which gives p21,
has been highlighted.

2.3 Quantum Mechanical Metrics

State Similarity

Let |ϕ〉 , |ψ〉 ∈ Cn be two quantum states for this part. To compare the similarity between them, one
can use the introduced standard norm and define a metric by ‖|ϕ〉 − |ψ〉‖.
Theorem 2.10. The tuple ({|ψ〉 ∈ Cn | ‖|ψ〉‖ = 1}, dn) is a metric space, where dn is the map

dn : Cn × Cn → R≥0, (|ϕ〉 , |ψ〉) 7→ ‖|ϕ〉 − |ψ〉‖ (2.3.1)

12

The proof can be found in [2, p. 1-2], the definition of a metric can be found in [2, p. 551]. This
theorem, to us, has semantical meaning. The complex vector norm induces a metric, meaning that we
can measure the similarity between states by computing the above formula. A short rewrite yields the
following theorem.

Theorem 2.11. It holds, that

‖|ϕ〉 − |ψ〉‖ =
√

2(1− Re(〈ϕ|ψ〉)) (2.3.2)

Proof. We use the additivity of the complex standard product in both components and compute:

‖|ϕ〉 − |ψ〉‖2 = 〈|ϕ〉 − |ψ〉||ϕ〉 − |ψ〉〉 (2.3.3)
= 〈ϕ|ϕ〉 − 〈ψ|ϕ〉 − 〈ϕ|ψ〉+ 〈ψ|ψ〉 (2.3.4)
(1)
= 2(1− Re(〈ϕ|ψ〉)) (2.3.5)

(1) We use, that ‖|ϕ〉‖2 = ‖|ψ〉‖2 = 1. Furthermore, we have

〈ψ|ϕ〉+ 〈ϕ|ψ〉 =
n∑

i=1

ϕiψ
∗
i +

n∑
i=1

ϕ∗
iψi (2.3.6)

However, ϕiψ
∗
i + ϕ∗

iψi = 2ϕi1ψi1 + 2ϕi2ψi2. So 〈ψ|ϕ〉+ 〈ϕ|ψ〉 = 2Re(〈ϕ|ψ〉).

■

Operator Similarity

Similarly to state similarity, there are norms for operators, which allow us to, for instance, analyze the
error of a quantum algorithm. With [2, p. 51] in mind, we introduce the following theorem.

Theorem 2.12. The following map is a norm, the so-called operator norm:

‖·‖ : Cn×n → R≥0, A 7→ max
|φ⟩∈Cn

∥|φ⟩∥=1

‖A |ϕ〉‖ (2.3.7)

Proof. Let S := {|ϕ〉 ∈ Cn | ‖|ϕ〉‖ = 1}. The map is well-defined, since linear maps over Cn are
continuous and S is closed and bounded by definition wrt. the standard topology over Cn, thus by
Heine-Borel [8, p. 41] compact. So the maximum always exists [8, p. 43]. To be precise, the closedness
is due to one being able to span a line between a point outside of S and 0 and taking the distance
to the point hit on S as the associated open set for the point, the boundedness, due to the fact, that
max{‖|v〉‖} = 1 < 2, so S ⊂ {v ∈ Cn | ‖v‖ < 2}.
The homogenity follows from ‖(zA) |ϕ〉‖ = |z|‖A |ϕ〉‖, which carries over into the maximum. The triangle
inequality also carries over from the norm of Cn. Lastly, the positive-definiteness is obtained by observing,
that if the vectors of an arbitrary base are all mapped to zero, the linear map itself must be zero. This
concludes the proof. ■

Example 2.13. Consider the operator given by

A :=

(
1 0
i 0

)
(2.3.8)

Then for any (b1, b2) ∈ C2,
∥∥∥A (b1 b2

)t∥∥∥2 = 2|b1|2, so ‖A‖ =
√
2.

This norm also induces a metric, as the norm for states did.
Remark 2.14 (Comparing Operators). To compare two operators U and U ′ and prove a bound for the
operator distance ‖U − U ′‖, it suffices to bound the distance ‖U |ϕ〉 − U ′ |ϕ〉‖, with |ϕ〉 being an arbitrary
quantum state.

13

2.4 Qutrits

Whilst qubits are the quantum equivalent of bits, qutrits imitate the concept of a trit. Such electrical
devices allow us to store three states, instead of two. In some systems, we denote them as 0, 1, 2 and in
others in form of the balanced representation −1, 0, 1 for convenience [25, p. 1]. A qutrit is a member of
C3. We denote the canonical base as {|0〉 , |1〉 , |2〉} [26, pp. 2-3].
We want to study three-dimensional rotations of qutrits. First, we give a lemma, which we derive from
[10, pp. 70-75].

Definition 2.15. Let

× : R3 × R3 → R3, (u, v) 7→

u2v3 − u3v2u3v1 − u1v3
u1v2 − u2v1

 (2.4.1)

be the so-called cross product.

Lemma 2.16. If {u, v} ⊆ R3 is an orthonormal system, then {u, v, u× v} is an orthonormal basis.
The proof can be found in the above-mentioned literature. When constructing three-dimensional uni-
taries, the cross product proves to be useful, as we will see in the proof of the following theorem.

Theorem 2.17 (Three-Dimensional Qutrit Rotation). For a m ∈ N≥1-qubit-register with an appended
qutrit and classically efficiently computable functions f : R → R, g : R → R, s.t. f2 + g2 ≤ 1 and
g2(x) 6= 1 for all x ∈ R, there is an efficient quantum algorithm, that achieves for any desirable precision

C2m·3 → C2m·3, |λ〉 |0〉 7→ |λ〉 (
√
1− f2(λ)− g2(λ) |0〉+ f(λ) |1〉+ g(λ) |2〉) (2.4.2)

Proof. We start off with a geometric argument on three-dimensional rotations. One notices, that the
desired state of the qutrit is normalized, and that the amplitudes of the state vector are real. We can
imagine the problem as moving the vector |0〉 on the real unit sphere S2 into our target state, as depicted
in Figure 4.
We now directly explain, how to rotate the qutrit state |0〉 into an arbitrary qutrit state of form |ξ〉 ∈ R3.
Let P01 := |0〉 〈0| + |1〉 〈1|. ϕ := ∢(|0〉 , P01 |ξ〉), ψ := ∢(P01 |ξ〉 , |ξ〉). Let (ϕ,ψ) = (0, π/2), if |ξ〉3 = 1
and (ϕ,ψ) = (0, 3π/2) for |ξ〉3 = −1. Note, that P01 performs the projection onto the plane spanned by
{|0〉 , |1〉}. First, we rotate |0〉 along the plane spanned by {|0〉 , |1〉} by angle ϕ. Then, we rotate the
resulting vector P01 |ξ〉 by the angle ψ along the plane spanned by {P01 |ξ〉 , |2〉} into |ξ〉.
The two-dimensional standard rotation matrix, as seen in Lemma 2.3, is for some θ ∈ (−π, π](

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(2.4.3)

In three dimensions, we can always fix one coordinate and look at the cartesian coordinate system, that
is spanned, when the canonical unit vector of the fixed coordinate points upwards and the others point
downwards. Especially, |2〉 is to the right of |0〉. Otherwise, |0〉 is right of |1〉 and |1〉 is right of |2〉. To
rotate in these induced planes, we look at the rotation matrices of form

Rx(θ) :=

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , Ry(θ) :=

− sin(θ) 0 cos(θ)
0 1 0

cos(θ) 0 sin(θ)

 , Rz(θ) :=

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


(2.4.4)

Pay special note to Ry(θ). We apply Rz(ϕ) to obtain

|0〉 =

1
0
0

 7→
cos(ϕ)
sin(ϕ)

0

 (2.4.5)

and then cos(ϕ)
sin(ϕ)

0

 7→ cos(ψ)

cos(ϕ)
sin(ϕ)

0

+ sin(ψ) |2〉 =

cos(ϕ) cos(ψ)
sin(ϕ) cos(ψ)

sin(ψ)

 (2.4.6)

14

To get geometrical intuition for this result, we can observe, that as we look at the latter described plane,
the coefficients of this linear combination correspond to the lengths of the vectors for the final state.
We want a unitary, which is able to rotate |0〉 as described. In other words, we are searching for values
α, β, γ, δ, ε, ζ ∈ C, s.t. we have a unitary matrix of formcos(ϕ) cos(ψ) α β

sin(ϕ) cos(ψ) γ δ
sin(ψ) ε ζ

 (2.4.7)

We can derive at least two such unitaries. First, observe, that the norm of the first column is 1, since
Theorem B.3 gives us:

(cos2(ϕ) + sin2(ϕ)) cos2(ψ) + sin2(ψ) = 1 (2.4.8)

By inspecting the coefficients closely, we suggest the vector:− cos(ϕ) sin(ψ)
− sin(ϕ) sin(ψ)

cos(ψ)

 (2.4.9)

To form an orthonormal basis of a 2-dimensional subspace of C3. And indeed, we have for the inner
product〈 cos(ϕ) cos(ψ)

sin(ϕ) cos(ψ)
sin(ψ)

∣∣∣∣∣∣
− cos(ϕ) sin(ψ)
− sin(ϕ) sin(ψ)

cos(ψ)

〉
= −(cos2(ϕ) + sin2(ϕ)) cos(ψ) sin(ψ) + cos(ψ) sin(ψ) = 0

(2.4.10)

The vector is also normalized, due to

(cos2(ϕ) + sin2(ϕ)) sin2(ψ) + cos2(ψ) = 1 (2.4.11)

In the above vector, we negated the first two components. One can also negate only the third one, but
for (ϕ,ψ) = (0, 0), that would give us − |2〉. We choose the first version, due to preference. Furthermore,
to construct the third vector, we can take cross product, see previously Lemma 2.16, of both vectors to
obtain a vector, that is orthogonal to both and even normalized. We havecos(ϕ) cos(ψ)

sin(ϕ) cos(ψ)
sin(ψ)

×
− cos(ϕ) sin(ψ)
− sin(ϕ) sin(ψ)

cos(ψ)

 (2.4.12)

=

 sin(ϕ) cos2(ψ) + sin2(ψ) sin(ϕ)
− sin2(ψ) cos(ϕ)− cos(ϕ) cos2(ψ)

− cos(ϕ) cos(ψ) sin(ϕ) sin(ψ) + sin(ϕ) cos(ψ) cos(ϕ) sin(ψ)

 =

 sin(ϕ)
− cos(ϕ)

0

 (2.4.13)

The obtained vector is normalized and, with the other two vectors, forms an orthogonal base of C3 with
the other two vectors. We get the matrix

R(ϕ,ψ) :=

cos(ϕ) cos(ψ) − cos(ϕ) sin(ψ) sin(ϕ)
sin(ϕ) cos(ψ) − sin(ϕ) sin(ψ) − cos(ϕ)

sin(ψ) cos(ϕ) 0

 (2.4.14)

This matrix is unitary, according to our derivation and Theorem 1.4. We turn to the original problem.
Using the first column of the matrix, we get the desired condition:

|0〉 7→

cos(ϕ) cos(ψ)
sin(ϕ) cos(ψ)

sin(ψ)

 =

√1− f2(λ)− g2(λ)
f(λ)
g(λ)

 (2.4.15)

From which we get ψ := arcsin(g(λ)) and ϕ := arcsin

(
f(λ)√
1−g2(λ)

)
.

15

Append n, o ∈ N≥1 zeroed-out qubits to the first register and perform the map

|λ〉 |0〉 |0〉 7→ |λ〉

∣∣∣∣∣
(
arcsin

(
f(λ)√

1− g2(λ)

)
, arcsin(g(λ))

)〉
(2.4.16)

Here, we have stored the approximations of ϕ and ψ in the two auxiliary registers. It is also clear, that
we can denote such a tuple in binary via an arbitrary encoding format. We define a unitary of form

2o−1∑
θ=0

|θ〉 〈θ| ⊗R(0,F(θ)) +
2n+o−1∑
θ=2o

|θ〉 〈θ| ⊗R(F(θ − 2o),F(θ mod 2o)) (2.4.17)

similar to the proof of Lemma 2.3. This gives us the desired behavior of

|λ〉

∣∣∣∣∣
(
arcsin

(
f(λ)√

1− g2(λ)

)
, arcsin(g(λ))

)〉
|0〉 (2.4.18)

7→ |λ〉 |0〉 |0〉 (
√

1− f2(λ)− g2(λ) |0〉+ f(λ) |1〉+ g(λ) |2〉) (2.4.19)

by uncomputing the helper bits afterwards. It is clear, that the above instructions are all efficiently
implementable. Thus, we are finished. ■

Remark 2.18 (On the Orientation of the Coordinate System). We have transformed cartesian system,
spanned by {|0〉 , |1〉 , |2〉}, into another one, spanned by {|0〉 , |2〉 ,− |1〉}, with the associated mappings
of the canonical basis vectors in order of this enumeration. This may help visualize the transformation
much better. Note that, furthermore, the vector product respects the right hand rule [10, pp. 70-75],
related to Lenz’s law from electrophysics [27, pp. 314-315]. By reversing the order in the vector product,
we could obtain a map into the coordinate system, spanned by the vectors {|0〉 , |2〉 , |1〉}, in this order,
but we refrain from doing that.

|0〉

|1〉

|2〉

|ξ〉

ϕ

ψ

Figure 4: Rotating the qutrit state |0〉 according to some angles ϕ,ψ ∈ (−π, π] into some state |ξ〉 ∈
R3 ⊂ C3. Here illustrated for |ξ〉 := 1√

10
(|0〉+ |1〉) + 2√

5
|2〉, thus ϕ = π

4 and ψ = arcsin
(

2√
5

)
.

2.5 Amplitude Amplification

In 2000, Brassard et al. [28, pp. 4-10] studied the problem of boosting the success probability of an
arbitrary quantum algorithm, i.e., the probability of a measurement yielding a desired result. Inspired by
the ideas from Grover et al., the researchers developed the so-called Amplitude Amplification algorithm,
to which this subsection is dedicated.

16

Grovers Multi-Search Algorithm

Grovers algorithm for a multi-search problem, as in [19, pp. 140-155], may be formulated the following
way.

Theorem 2.19 (Grovers Algorithm for a Multi-Search Problem). Given a function of form f : [0, N −
1]N → {0, 1}, N := 2n with 0 < |f−1(1)| =:M < N , there exists a quantum algorithm, that can find an
element from f−1(1) in time O(

√
N/M).

Remark 2.20 (Form of f). If the cardinality of the domain of f is not a power of two, then f can be
naturally extended to some function f̂ by extending the count to the next power of two and mapping all
of the new domain values to zero.
We want to now recall the idea of the multi-search version, as the version for single-search problems
is naturally implied and works analogously. We shall further omit the analysis, as we will prove the
more general case with AA. The structure of Grovers algorithm follows the following iteration: We first
construct the uniform superposition state H⊗n |0〉, initialize a helper qubit to (H ◦ NOT) |0〉 and then
repeatedly apply the so-called Grover operator [19, p. 146]

G := −H⊗nRNH
⊗nVf (2.5.1)

exactly

G(N,M) ≈ π

4
/ arcsin

(√
M

N

)
− 1

2
(2.5.2)

times [19, p. 153-155], where G(N,M) ∈ N denotes the required number of iterations. As G(N,M) ∈
O(
√
N/M) due to Lemma 3.11, this gives the claimed runtime. In the analysis of Grovers algorithm,

Vf is interpreted as the operator mirroring the amplitudes to be boosted wrt. 0, whilst −H⊗nRNH
⊗n

mirrors all amplitudes wrt. the arithmetic mean of all amplitudes. This directly gives the geometric
interpretation for the algorithm, that Grovers procedure successively rotates the uniform superposition
state into the boosted state. The operators RN , Vf ∈ CN×N here are defined via the following actions
on any canonical basis vector |x〉 of CN :

RN |x〉 :=

{
− |x〉 x = 0

|x〉 x 6= 0
Vf |x〉 :=

{
− |x〉 x ∈ f−1(1)

|x〉 x /∈ f−1(0)
(2.5.3)

Let it be noted, that the required helper qubit is used by Vf and omitted here for simplicity. Denoting
Vf ∈ CN×N is thus technically wrong, but we do not loose any generality. Both gates can be efficiently
implemented [19, pp. 144-145].

The General Case

Now to the more general case in AA. Consider a measurement-free (except for helper qubits) quantum
algorithm acting on n qubits U ∈ CN×N and a Boolean function χ : {0, 1}n → {0, 1}. Suppose we wish to
measure the state |Ψ〉 := U |0〉 wrt. the observable {span({|k〉 | k ∈ χ−1(0)}), span({|k〉 | k ∈ χ−1(1)})}
to obtain the index of the subspace given by χ−1(1) with probability p := 〈P1 |Ψ〉|P1 |Ψ〉〉 ∈ (0, 1) wlog.,
where Pi :=

∑
x∈χ−1(i) |x〉 〈x| for i ∈ F2. We especially want to boost that probability of success. The

following formulation is directly based off the paper by Brassard et al..

Denote |Ψi〉 := Pi |Ψ〉 as well for i ∈ F2. Initialize a n-qubit register to U |0〉, and an ancilla qubit to
(H ◦NOT) |0〉, but we omit it as explained above. We now define an operator Q ∈ CN×N via

Q := −URNU
†Vχ (2.5.4)

where Vχ corresponds to Vf via f := χ. This operator corresponds to a direct generalization of the
Grover operator from Equation (2.5.1).

17

Lemma 2.21. Let θp := arcsin
(√
p
)
. After j ∈ N iterations of Q on |Ψ〉, we have

Qj |Ψ〉 = 1
√
p
sin((2j + 1)θp) |Ψ1〉+

1√
1− p

cos((2j + 1)θp) |Ψ0〉 (2.5.5)

This result is presented in [28, pp. 5-7], we give the argument in more detail.

Proof. The proof is divided into the following parts:

(i) We first calculate the states Q |Ψ1〉 and Q |Ψ0〉, which will give us, that the operator only acts in
the two-dimensional subspace span({|Ψ1〉 , |Ψ0〉}).

(ii) After rewriting Q wrt. the subspace spanned by the images from Section 2.5, we calculate its
eigenvalues and thus span an eigenbasis for the mentioned subspace.

(iii) The initial state |Ψ〉 is rewritten in the subspace spanned by the eigenvectors, from which we can
calculate Qj |Ψ〉.

(i) The behavior of Q on the states |Ψ0〉 and |Ψ1〉 is given by:

Q |Ψ1〉
(1)
= U(EN − 2 |0〉 〈0|)U† |Ψ1〉

(2)
= |Ψ1〉 − 2 |Ψ〉 〈Ψ|Ψ1〉

(3)
= (1− 2p) |Ψ1〉 − 2p |Ψ0〉 (2.5.6)

Q |Ψ0〉 = −U(EN − 2 |0〉 〈0|)U † |Ψ0〉 = − |Ψ0〉+ 2 |Ψ〉 〈Ψ|Ψ0〉
(4)
= 2(1− p) |Ψ1〉+ (1− 2p) |Ψ0〉

(2.5.7)

(1) Consider the definitions of Vχ and RN as in Equation (2.5.3), from which we directly have
RN = EN − 2 |0〉 〈0|.
(2) Using UENU

† = EN and 2U |0〉 〈0|U † = 2U |0〉 (U |0〉)† = 2 |Ψ〉 〈Ψ|.
(3) By |Ψ〉 = |Ψ1〉+ |Ψ0〉 and the orthogonality relations.
(4) As 〈Ψ|Ψ0〉 = 〈Ψ| (|Ψ〉 − |Ψ1〉) = 1− p.

We rewrite Q wrt. the space HΨ := span({|Ψ1〉 , |Ψ0〉}) as

QΨ :=

(
1− 2p 2(1− p)
−2p 1− 2p

)
(2.5.8)

Since |Ψ〉 ∈ HΨ, we may repeatedly apply Q and remain in HΨ, as in Grovers algorithm.

(ii) We calculate the eigenvalues and eigenvectors of QΨ. The characteristic polynomial gives via
Sarrus’ rule

det(QΨ − λ±E2) = (1− 2p− λ±)2 + 4p(1− p) = λ2± − 2(1− 2p)λ± + 1 (2.5.9)

and by that

λ± = (1− 2p)±
√

(1− 2p)2 − 1 = 1± i2√p
√
1− p− 2p (2.5.10)

(1)
= cos2(θp) + sin2(θp)± i2 sin(θp) cos(θp)− 2 sin2(θp) (2.5.11)
= (cos(θp)± i sin(θp))2 = e±i2θp (2.5.12)

(1) Define θp := arcsin
(√
p
)
∈ [0, π/2] and use Theorem B.3.

To obtain an eigenvector base for HΨ, consider the SLE (QΨ − λ±E2) |Ψ±〉 = 0 for some |Ψ±〉 :=
α± |Ψ1〉+ β± |Ψ0〉 with α±, β± ∈ C. We handle both λ+ and λ− in one calculation. Considering,
that

1− 2p− λ± = 1− 2p− (
√
1− p± i√p)2 = ∓i2√p

√
1− p (2.5.13)

18

and dividing the SLEs first two rows by 2
√
1− p and 2

√
p respectively, we rewrite the SLE as(

∓i√p
√
1− p

−√p ∓i
√
1− p

)(
α±
β±

)
=

(
0
0

)
(2.5.14)

Wlog. setting α± := 1/
√
2p, we obtain(

∓ i√
2
+
√
1− pβ±

− 1√
2
∓ i
√
1− pβ±

)
=

(
0
0

)
(2.5.15)

and thus β± = ± i√
2

1√
1−p

. An eigenbasis of HΨ is thus composed of the eigenvectors

|Ψ±〉 := α± |Ψ1〉+ β± |Ψ0〉 =
1√
2

(
1
√
p
|Ψ1〉 ±

i√
1− p

|Ψ0〉
)

(2.5.16)

(iii) Rewriting |Ψ〉 in these eigenbasis vectors gives using the square root of the full form of λ± as in
Equation (2.5.13), i.e.

√
λ± =

√
1− p± i√p = eiθp , gives

|Ψ〉 = |Ψ1〉+ |Ψ0〉 =
√
p

2
(|Ψ+〉+ |Ψ−〉) +

1

i

√
1− p
2

(|Ψ+〉 − |Ψ−〉) =
−i√
2
(eiθp |Ψ+〉 − e−iθp |Ψ−〉)

(2.5.17)

As |Ψ+〉 and |Ψ−〉 are eigenvectors of QΨ, we thus have

Qj
Ψ |Ψ〉 =

−i√
2

(
1√
2p

(ei(2j+1)θp − e−i(2j+1)θp) |Ψ1〉+
i√

2(1− p)
(ei(2j+1)θp + e−i(2j+1)θp) |Ψ0〉

)
(2.5.18)

=
−i
2
√
p
(2i) sin((2j + 1)θp) |Ψ1〉+

1

2
√
1− p

(2) cos((2j + 1)θp) |Ψ0〉 (2.5.19)

=
1
√
p
sin((2j + 1)θp) |Ψ1〉+

1√
1− p

cos((2j + 1)θp) |Ψ0〉 (2.5.20)

This concludes the proof. ■

Assuming, that we know the success probability p, we can directly use Lemma 2.21 to determine the
number of iterations needed for producing a state close to |Ψ1〉. The condition

sin2((2j + 1)θp) ≈ 1 (2.5.21)

for the success probablity of the state Qj |Ψ〉 can be optimized by letting approximately j := bπ/(4θp)c.
As θp = arcsin

(√
p
)
>
√
p following Lemma 3.11, we thus have a runtime of O(1/√p).5

We now want to consider the case in which p is unknown [28, pp. 8-10]. The idea by Brassard et al.
is to uniformly choose a number of applications of Q, which is exponentially bounded. To be precise,
consider the following algorithm.

5Even Θ(1/
√
p) for this general case due to lower-bound results for Grovers Algorithm, in which we will not dive into

in this thesis.

19

Algorithm 1 Amplitude Amplification
Given: A unitary U ∈ CN×N , with N := 2n, n ∈ N≥1, as well as a function χ : [0, N − 1]N → {0, 1}

with χ−1(1) /∈ {∅, [0, N − 1]N}.
Return: A quantum state |Ψ〉 ∈ CN , where the measurement of U |0〉 wrt. the observable

{span(B0), span(B1)} with Bi := {|x〉 | x ∈ χ−1(i)} for i ∈ F2 yielded a 1.
1: Let l := 0, M := 0 and let c ∈ (1, 2) be arbitrary, but fixed.
2: while true do
3: l← l + 1, M ← dcle
4: Initialize |Ψ〉 := U |0〉 ∈ CN , while considering the necessary ancilla qubit.
5: Measure |Ψ〉 wrt. {span(B0), span(B1)}, obtaining an index z ∈ F2.
6: if z = 1 then
7: return |Ψ〉
8: else
9: Initialize |Ψ′〉 := U |0〉 ∈ CN , while considering the necessary ancilla qubit.

10: Pick some j ∈ [1,M]N uniformly at random.
11: |Ψ′〉 ← Qj |Ψ′〉
12: Measure |Ψ′〉 wrt. {span(B0), span(B1)}, obtaining an index z′ ∈ F2.
13: if z′ = 1 then
14: return |Ψ′〉
15: else
16: Go to step 3.

For the analysis, we need the following lemma.
Lemma 2.22. For any α ∈ C and m ∈ N≥1, we have

m−1∑
j=0

cos((2j + 1)α) =
sin(2mα)

2 sin(α)
(2.5.22)

This lemma is taken from lemma 1 of a previous work on tight bounds for Grovers algorithm by Brassard
and Boyer et al. [29, p. 3]. A similar analysis to the one presented in [28, pp. 9-10] is given there. We
prove the lemma in the appendix, see Appendix A.
Lemma 2.23. Algorithm 1 runs in time O

(
1√
p

)
.

Proof. We use the notation as in Lemma 2.21 and Algorithm 1. Analyzing the number of calls directly
turns out to be quite difficult due to the Laplacian experiment in step Line 10. Brassard et al. thus
suggest the following proof strategy: The expected probability of success in Line 12 is first lower-bounded
and then the variable l is split at a point M0 ∈ N, chosen in dependence of θp and c. We then argue that
both until M0 is reached and afterwards, we require O

(
1√
p

)
applications of Q.

First, consider the case, where p ≥ 1/4. Then the expected number of calls to Line 5 is
∞∑

n=0

(1− p)n ≥
∞∑

n=0

3

4n
= 4 (2.5.23)

due to Theorem B.5.
Assume p < 1/4. Let l ∈ N≥1 be fixed and M :=

⌈
cl
⌉
. Let X : [1,M]N → [0, 1], j 7→ 1

p sin
2((2j +

1)θp) denote the Laplacian random variable assigning each j the success probability of Line 12 as in
Lemma 2.21. Then

E[X] =

M∑
j=1

1

M

1

p
sin2((2j + 1)θp)

(1)
=

1

2p

1− 1

M

M∑
j=1

cos((2j + 1)(2θp))

 (2.5.24)

(2)
=

1

2p

(
1− 1

2M

sin(4(M + 1)θp)

sin(2θp)
+

1

M
cos(2θp)

)
(2.5.25)

(3)
>

1

2

(
1− 1

2M

sin(4(M + 1)θp)

sin(θp)

)
(4)
=

1

2

(
1− 1

2M
√
p

)
(2.5.26)

20

(1) Using Lemma 3.3.

(2) Using Lemma 2.22.

(3) Consider the strict monotonicity of
√
· and arcsin in (0, 1]. So θp ∈ (0, arcsin(1/2)). Use sin(2x) >

sin(x) for x ∈ (0, π/4] ⊃ (0, arcsin(1/2)), as the sine is strictly monotonous in [0, π/2]. Use p ∈ (0, 1)
as well. Also use cos| [0,π/2] > 0.

(4) By the definition of θp, see Lemma 2.21, we have sin(θp) =
√
p.

We shall from now on continue with the expected probability for success in Line 12. Whether the
resulting lower bound is an actual probability solely depends on the value of l, so we may derive the
condition

1

2

(
1− 1

2M
√
p

)
∈ [0, 1] ; 1

2
√
p
≤ cl ≤M l ; l ≥ logc

(
1

2
√
p

)
(2.5.27)

This observation leads to the following approach for the analysis: Until the condition in Equation (2.5.27)
holds, we may iterate dlogc(1/(2

√
p))e times, requiring at most

⌈
logc

(
1

2
√

p

)⌉∑
l=1

⌈
cl
⌉
≤

⌈
logc

(
1

2
√

p

)⌉∑
l=0

(cl + 1) =
1− c

⌈
logc

(
1

2
√

p

)⌉
+1

1− c
+

⌈
logc

(
1

2
√
p

)⌉
(2.5.28)

≤
1− c2

2
√
p

1− c
+

⌈
logc

(
1

2
√
p

)⌉
∈ O

(
1
√
p

)
(2.5.29)

calls to Q using Theorem B.5. Let M0 := c

⌈
logc

(
1

2
√

p

)⌉
. We have analyzed the asymptotic number of

calls to Q until M has reached or surpassed M0. After that, cl = M0c
i with i := l −

⌈
logc

(
1

2
√
p

)⌉
≥ 1.

By bounding M0 >
1

2
√
p and M > M0c

i, we have a lower bound for the success probability of Line 12 by

E[X] >
1

2

(
1− 1

2M0ci
√
p

)
>

1

2

(
1− 1

ci

)
(2.5.30)

The complementary event, by the previous argument, is bounded from above by 1− E[X] ≤ 1
2

(
1 + 1

ci

)
.

Consider the condition c
2

(
1 + 1

ci

)
< 1, which gives i > logc

(
c

2−c

)
. Now looking at the expectation

value of the geometric random variable counting the calls of Q after M > M0, which is roughly∑∞
i=1M0c

i
(
1
2

(
1 + 1

ci

))i, we may conclude the statement, as after O(1) many steps involving O(M0)

applications of Q each, c
2

(
1 + 1

ci

)
< 1, where we can bound the limit of the associated geometric series

by O(M0). So we require a total of O(M0) = O(1/
√
p) calls to Q, concluding the argument. ■

Theorem 2.24 (Amplitude Amplification). Given a measurement-free quantum algorithm U ∈ CN×N ,
N := 2n, n ∈ N, which succeeds, i.e., gives a normalized projection into a subspace spanned by desirable
basis vectors, with a possibly a priori unknown probability p ∈ (0, 1), we can perform a successful
measurement using a quantum algorithm, that requires a runtime of O(1/√p).

Corollary 2.25. Theorem 2.19 follows, especially for the case, when M is unknown. Consider χ := f and
the unitary U := H⊗n and the quantum algorithm, that initializes U |0〉 = 1√

N

∑N−1
i=0 |i〉. Then measuring

wrt. the observable {span(B0), span(B1)} with the notation as in Algorithm 1 succeeds with probability
M/N . Finding an element from f−1(1) thus requires O(

√
N/M) applications of Q using AA. Note, that

after the measurement, we need to measure again wrt. the observable {span(|x〉) | x ∈ {0, 1}n}, as the
state is then in span(B1).
Corollary 2.26. AA is analogously applicable in the case, where qutrits are used inside of the algorithm
of concern, as we only have to adjust the operator Q and consider in the analysis, that the Boolean
function maps from the qubit-qutrit canonical basis vector indices into {0, 1}.

21

2.6 Quantum Phase Estimation

Problem 2.27. Let U ∈ CN×N , N := 2n, n ∈ N≥1, be a unitary matrix with an eigenstate |b〉 ∈ CN

of phase θ ∈ [0, 1). The problem of calculating or approximating θ is called quantum phase estimation
(QPE).
There is a general algorithm to this problem. The following theorem summarizes this classical result,
which can be found in [7, pp. 221-226]. Figure 6 shows the circuit diagram of the general QPE algorithm.

Theorem 2.28 (General Quantum Phase Estimation). Let ε ∈ (0, 1), n ∈ N≥1, N := 2n and

t ≥ n+

⌈
log

(
2 +

1

2ε

)⌉
(2.6.1)

Given a unitary U ∈ CN×N , an eigenstate |b〉 ∈ CN of U , an oracle for calculating the controlled unitaries
Û(2k) : C2·N → C2·N achieving |0〉 |b〉 7→ (|0〉+ e2πi(2

kθ) |1〉) |b〉 for arbitrary k ∈ [0, 2t−1]N and a unitary
gate B ∈ CN×N with B |0〉 = |b〉 and potentially asymptotic time complexity TB, we can approximate the
phase of the associated eigenvalue of |b〉 using t bits with Θ(TB+ t2) operations and a success probability
of at least 1− ε.

...

...

...

...

...

|0〉 H 1√
2

(
|0〉+ e2πi(2

0)θ |1〉
)

|0〉 H 1√
2

(
|0〉+ e2πi(2

1)θ |1〉
)

|0〉 H 1√
2

(
|0〉+ e2πi(2

t−1)θ |1〉
)

|0〉 B Û(20) Û(21) Û(2t−1) |b〉

Figure 5: Circuit diagram for the first part of the general QPE algorithm. The t ∈ N≥1 qubits are used
to approximate a binary representation of the eigenvalue phase, as we can see on the right. The essential
point of the first part is to store the vector

⊗2t−1
k=0

(
|0〉+ e2πi(2

k)θ |1〉
)
|b〉 = 1√

2t

∑2t−1
j=0 |j〉U j |b〉, as one

can recognize by aligning the binary representation of the summed up factor in the amplitude exponent
with the canonical state for each possible product taken. Replication of [7, pp. 221-226].

≈ θ
|0〉 H⊗n

1√
2t

∑2t−1
j=0 |j〉 |b〉 7→

1√
2t

∑2t−1
j=0 |j〉U j |b〉

QFT†

|0〉 B |b〉

Figure 6: Circuit diagram for the general QPE algorithm.

Remark 2.29. Consider, that

• this subsection was designated to showcase the most commonly seen QPE algorithm, but it will be
of no further interest for the remaining thesis, as we will use different custom routines for phase
estimation later on.

• the algorithm stores the approximation in a register to be measured, which may make it unsuitable
for a subroutine in a larger algorithm. Furthermore, the requirement for the existence of the
controlled exponential unitaries of U may be very restrictive.

22

2.7 Hamiltonian Simulation

Consider our initial discussion on QM in Section 1.1. The time postulate in our form of interest was given
in Equation (1.1.2). Since for a unitary H ∈ Cn×n and a time t ∈ R≥0, we have, that eiHt is unitary
via Theorem 1.18, we can speak of particles, which evolve according to such a matrix exponential of a
Hamiltonian, so for a quantum particle with state |ψ(·)〉, we could have

|ψ(t)〉 = eiHt |ψ(0)〉 (2.7.1)

for one such time t. In the context of qubits, we may reformulate this fact as the following problem.
Problem 2.30. Let H ∈ CN×N , N := 2n, be Hermitian and t ∈ R≥0. The problem of applying the
unitary operator eiHt to a state |ψ〉 ∈ CN is called Hamiltonian simulation.
This problem is in a very active state of research and has yielded a lot of results over the years, some
notable mentions are [30, 31]. Especially the Hamiltonian simulation with Hermitian operators in infinite-
dimensional Hilbert spaces is of interest for general particle physics, QM and also for Quantum Chemistry,
as it allows the simulation of the development of molecules, which in turn has multiple applications like
the development of pharmaceuticals [32, pp. 14-18]6. We are especially interested in a comparatively
old result by Berry et al. [33], which draws results from the same paper we referenced for the problem
of quantum state generation by Aharonov et al. [22].

One approach to Problem 2.30 may be to approximate eiHt directly by the associated Taylor series as
in Definition 1.16, but such an approach has been proven to not be satisfactory in practice [7, p. 206],
although some voices [31, p. 1] argue, that this commonly presented perspective is too pessimistic.
Here, we consider techniques based on decomposing the Hamiltonian into a sum of Hamiltonians H =∑m

j=1Hj and then individually simulating H1, ..., Hm for m ∈ N≥1. The main problem of using this idea
directly is that the Hamiltonians may not commute, which violates Lemma 1.17. Instead, we compute
an approximation of the so-called Trotter formula.

Theorem 2.31 (Trotter Formula). For Hamiltonians A,B ∈ Cn×n and t ∈ R≥0, we have

ei(A+B)t = lim
m→∞

(eiAt/meiBt/m)m (2.7.2)

Note that we explicitely do not require commuting operators here. We can also omit i and t, but it suits
our context. The proof is can be found in [7, p. 207]. Writing a sum of Hamiltonians in such a form is
also the basic idea of the constructions used by Berry et al..

We now consider sparse Hamiltonians, according to Definition 1.27. Let H ∈ Cn be an s-sparse, efficiently
row computable Hamiltonian, where s ∈ N. We first decompose the Hamiltonian into easily simulatable
Hamiltonians, and then apply a recursion formula found by the researcher Suzuki, which is in turn based
on the Trotter formula. As each Hamiltonian is easily simulatable, and we have approximately equality,
we obtain the required simulation. The idea can be illustrated via the following sketch, which resembles
a commutative diagram.

H

m∑
j=1

Hj

m∏
j=1

eiHjt

eiHt

Decomposition
into sparse

Hamiltonians
Efficient

individual
simulation

≈

Any possibly inefficient direct simulation

Definition 2.32. The iterated logarithm is defined as

log∗2 : R>0 → N, x 7→


0 x ≤ 1

min

i ∈ N≥1

∣∣∣∣∣∣ (log2 ◦... ◦ log2︸ ︷︷ ︸
i times

)(x) ≤ 1

 x > 1
(2.7.3)

6Note, that the Hamiltonians are approximated in a real setting.

23

Example 2.33. Whilst the iterated logarithm is a monotonically increasing function with discrete values,
it grows incredibly slow. A textbook example is log∗2(2

65536) = 5, which is a problem size, that is much
greater than 1080, the approximate number of atoms in the observable universe [34, pp. 58-59].
We first have the following theorem.

Theorem 2.34. There is a decomposition of H of form H =
∑6s2

i=1Hi, s.t. for each i ∈ [1, 6s2]N,
Hi ∈ Cn×n is a 1-sparse Hamiltonian, requiring an access time of O(log∗(n)) to H to determine its at
most one coefficient in one row.

Proof idea. The proof is based on a combinatorial argument on the entries of H. We consider the
graph GH := ([1, n]N, EH), where (i, j) ∈ EH iff Hij 6= 0. Since Hij = H∗

ji, which one checks via
Definition 1.7, we can take the graph to be undirected. We illustrate this in Figure 7 for an example.
A graph coloring is obtained and to prevent duplicate edges due to the coloring predicate, an additional
parameter, determined by so-called deterministic coin-tossing, is introduced. We will not describe the
method here. For each pair (i, j) and each additional such parameter ν, we introduce a Hamiltonian,
totalling 6s2 Hamiltonians, as we only consider such (i, j), where Hij 6= 0, as well as only six possible
values for ν according to the labeling scheme. The argument for the choice of ν is one of the main
contributions of that proof and contains an arguably long case distinction. With a small illustration, it
can be found in [33, p. 6-8].



1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1



1

2

3

4

5

6

7

8

Figure 7: The described graph for the chess-pattern Hamiltonian (
∑1

j=0

∑1
k=0 |j〉 〈k|)⊗2 ⊗ E2.

We further take the following theorem as given. It concerns the Hamiltonian simulation of a decomposable
Hamiltonian.

Theorem 2.35. Let a decomposed Hamiltonian H =
∑m

j=1Hj ∈ Cn×n with Hamiltonians H1, ..., Hm ∈
Cn×n be given. Define the Suzuki higher order integrators S2k of order k ∈ N≥1 recursively via

S2(λ) :=

m∏
j=1

eHjλ/2
m∏
j=1

eHm−j+1λ/2 S2k(λ) := S2(k−1)(pkλ)
2S2(k−1)((1− 4pk)λ)S2(k−1)(pkλ)

2

(2.7.4)

where λ ∈ C, pk := 1/(4− 41/(2k−1)). We have

‖exp (λH)− S2k(λ/r)
r‖ ∈ O(|λ|2k+1/r2k) (2.7.5)

for r ∈ N≥1.

Berry et al. [33] cite this result from [35]. Precisely, their cited result in eq. (4) of the paper is an
application of the form in the eqs. (40-42) from [35, p. 4]. The paper itself builds up on several research

24

results on quantum monte carlo simulations [35, p. 1] and concerns general decompositions of exponential
operators. In the case of Hamiltonian simulation, we let λ := it. Using this bound and the ideas for the
decomposition mentioned, the authors then obtain the following result.

Theorem 2.36. Using Theorem 2.35 and Theorem 2.34, there is a quantum algorithm, that computes
the Hamiltonian simulation of a s-sparse, s ∈ N, efficiently-row computable Hamiltonian H for a time
t ∈ R≥0 acting on n qubits in time

O
(
n log∗2(n)

2s4‖H‖te2
√

ln(5) ln(s2∥H∥t/ε)
)
= Õ(log2(N)s4t) (2.7.6)

where we denote by Õ(·) the runtime under negligence of the expression log∗2(n)
2‖H‖e2

√
ln(5) ln(s2∥H∥t/ε).

With the simplified expression for the runtime using the notation Õ(·), we follow Harrow et al. [3, pp.
5-6].
Derivation. We give a short derivation of this result from the results of the paper. In [33, pp. 8-9], we
have the algorithm runtime with auxiliary operations of

O(n log∗2(n)2d252k(d2τ)1+1/(2k)/ε1/(2k)) = O(n log∗2(n)2d4τ52k(d2τ)1/(2k)/ε1/(2k)) (2.7.7)

with τ := ‖H‖t and d := s from the notation of the paper. The parameter k ∈ N can be chosen at will,
it corresponds to the depth of the recursion of the Suzuki higher order integrators. To optimize k, we
consider the given minimum at [33, pp. 1-2]. To derive it, observe

52k(d2τ/ε)1/(2k) = e2k ln(5)+ln(d2τ/ε)/(2k) (2.7.8)

and let

f : R→ R, k 7→ 2k ln(5) + ln
(
d2τ/ε

)
/(2k) (2.7.9)

reusing the symbol k. Then we have

f ′(k) = 2 ln(5)−
ln
(
d2τ/ε

)
2k2

, f ′′(k) =
ln
(
d2τ/ε

)
k3

(2.7.10)

Solving for a minimum and using log5(x) = ln(x)/ ln(5) for any x ∈ R>0 thus gives

k ≈

√
ln(d2τ/ε)

4 ln(5)
=

1

2

√
log5(d

2τ/ε) (2.7.11)

Plugging this into Equation (2.7.8) then gives the value

eln(5)
√

log5(d
2τ/ε)+

√
ln(5)
√

ln(d2τ/ε) = e2
√

ln(5) ln(d2τ/ε) (2.7.12)

So the runtime is

O
(
n log∗2(n)

2s4‖H‖te2
√

ln(5) ln(s2∥H∥t/ε)
)

(2.7.13)

Remark 2.37. The contribution of keeping the error gap to the runtime is sublinear, meaning, that
e2
√

ln(5) ln(s2∥H∥t/ε) ∈ o(1/ε). Consider for that, that in general e2
√

ln(1/ε) ∈ o(1/ε), as limε→∞ e2
√
ε/ε =

limε→∞ e2
√
ε(1−(1/2)

√
ε) → 0. The error contribution to the runtime thus may be neglected.

With this result, we may also introduce another auxiliary gate, taken from [3, pp. 3-4].

Definition 2.38. The conditional Hamiltonian evolution gate for some Hermitian A ∈ CN×N , T :=
2t, t ∈ N≥1, N := 2n and t0 ∈ R>0 is the unitary map:

CHET,N,A,t0 : CTN → CTN , |x〉 |y〉 7→

(
T−1∑
τ=0

|τ〉 〈τ | ⊗ eiAτt0/T

)
|x〉 |y〉 (2.7.14)

25

CHET,N,A,t0 =


eiA·0·t0/T 0 . . . 0

0 eiA·1·t0/T . . . 0
...

...
0 0 . . . eiA·(T−1)·t0/T

 (2.7.15)

With this way of writing out the matrix for the conditional Hamiltonian evolution, it also becomes clear
that it is unitary, as we can use Lemma 1.17 and simulate the evolution for each k ∈ [0, N − 1]Nth of the
n qubits individually using A with time t0k/T , and thus a valid quantum gate.
Remark 2.39. We will regard the runtime of the controlled Hamiltonian evolution to be the same as the
individual Hamiltonian simulation, as in Theorem 2.36.

26

3 The HHL Algorithm

The currently asymptotically best classical method known for solving SLEs is the conjugate gradient
method, which runs in worst case time O(Ns

√
κ log2(1/ε)), as described in [36, complexity analysis on

pp. 37-38] or [11, pp. 279-306]. Here, ε ∈ R>0 is the error cap, κ ∈ R≥1 the condition number of the
input N × N matrix, where N ∈ N≥1, and s ∈ N is the sparsity as in Definition 1.27, assuming that
the matrix is efficiently row-computable. In many practical cases, the given matrix has about O(

√
N)

non-zero entries, for which the algorithm yields a runtime of about O(N3/2
√
κ), ignoring the complexity

factor for keeping the error low. In 2008, the researchers Harrow, Hassidim and Lloyd (HHL) described
a quantum algorithmic approach to solving SLEs. In this section, we will give a rigorous description of
the HHL algorithm, along with a rework of the original analysis. The original formulation can be found
in [3]. We will draw a lot of information from the alternative, more comprehensive formulation presented
by Dervovic et al. in [12, pp. 28-42] as well. Our contribution lies in the explicit description of the
auxiliary procedures, such as the initialization of a helper state and a description on three-dimensional
rotations, as well as more explicit runtime and error bounds. Most of these helper algorithms have been
elaborated in Section 2.

3.1 Problem Description and Assumptions

Starting off, let us pay attention to the general problem of solving SLEs.
Problem 3.1. Given A ∈ Cm×n, b ∈ Cm with m,n ∈ N≥1, find an x ∈ Cn with Ax = b, if it exists.
The HHL algorithm, in its original formulation, has the following requirements:

1. m = n and n is a power of two.

2. ‖b‖ = 1, so we may write |b〉.

3. |b〉 can be initialized efficiently in a log2(n)-qubit register.

4. A is well-conditioned, as in Definition 1.28.

5. The condition number κ(A) ∈ R≥1, using the notation from Definition 1.23, or at least an upper
bound of it, must be known in advance.

The result is then stored in a log2(n)-qubit register. So we may reformulate the problem.
Problem 3.2. Given a well-conditioned A ∈ CN×N with condition number κ := κ(A) ∈ R≥1 and an
efficiently initializable state |b〉 ∈ CN , N := 2n and n ∈ N≥1, find or approximate a quantum state
|x〉 ∈ CN , s.t. there is a C ∈ (0,∞) with A(C |x〉) = |b〉.
Note, that A may not be isometric, so we require that |x〉 solves the inversion problem up to some positive
multiplicative constant, which we can recover by comparing two non-zero elements of the vectors A |x〉
and |b〉. In Section 3.4, we will discuss some techniques for relaxing the assumptions.

3.2 Overview

We carry over the notation introduced in Problem 3.2. Let furthermore s ∈ N be the sparsity of A and
let κ := κ(A). In total, we will require t+n+1 qubits, where t ∈ N≥5 is a hyperparameter. Let T := 2t.
One will need to choose t appropriately for the matrix A, as described in the second next paragraph. In
Dervovic et al., the first register is called the clock register, the second the input register and the third
is an auxiliary qutrit [12, p. 30]. For the following, let {(λ1, |v1〉), ..., (λN , |vN 〉)} ⊆

[
1
κ , 1
]
× CN be the

eigenvalue-eigenvector pairs of an eigenbasis of A and decompose |b〉 as

|b〉 =:
N∑
j=1

βj |vj〉 =
N∑
j=1

〈b|vj〉 |vj〉 (3.2.1)

27

Brief Sketch of the Algorithm

We now give a brief sketch of the algorithm. Following the decomposition of |b〉 and Corollary 1.12, the
aim is to approximate the quantum state

|x〉 = 1

C

N∑
j=1

βj
λj
|vj〉 (3.2.2)

with some C ∈ R>0. The algorithm starts in the state |0〉 |0〉 |0〉 ∈ CTN ·3. The first steps are aimed
towards approximating all eigenvalues of A simultaneously from all T possible canonical state vectors
for the first register. To be precise, a state of form

N∑
j=1

βj |λ̃j〉 |vj〉 |0〉 (3.2.3)

is first produced. λ̃j here represents an approximation of λj , s.t. |λj − λ̃j | < 2π
t0

, where t0 ∈ R>0 is later
chosen to minimize the overall error, but it is a large value in general. Such an approximation exists, if
t and t0 are chosen well. The qutrit is then rotated to yield the state

N∑
j=1

βj |λ̃j〉 |vj〉
(√

1− f2(λ̃j)− g2(λ̃j) |0〉+ f(λ̃j) |1〉+ g(λ̃j) |2〉
)

(3.2.4)

The functions f : R>0 → [0, 1], g : R>0 → [0, 1] are so-called filter functions and defined in a way that
allows filtering out tiny eigenvalues, such that taking their reciprocal does not produce an inaccurate
state. With the assumptions made in Section 3.1, g(λ̃j) ≈ 0 and the filter functions thus evaluate to
approximately give the state

N∑
j=1

βj |λ̃j〉 |vj〉

(√
1− 1

4κ2λ̃j
2 |0〉+

1

2κλ̃j
|1〉

)
(3.2.5)

Uncomputing the eigenvalue approximation in the first register and applying amplitude amplification,
as in Algorithm 1, to measure a 1 in the qutrit gives us the state

1√
1

4κ2

∑N
j=1

|βj |2

λ̃2
j

1

2κ

N∑
j=1

βj

λ̃j
|vj〉 (3.2.6)

in the second register, which corresponds to our target state as in Equation (3.2.2).

Description of the Entire Algorithm

We now give a full description of the HHL algorithm with an associated circuit diagram. The choice of
the parameters ε, t0 and t will be explained in the analysis of the algorithm.

28

Algorithm 2 HHL Algorithm
Given: A well-conditioned A ∈ CN×N with condition number κ ∈ R≥1 or an upper bound of it, where

N := 2n with n ∈ N≥1, a vector |b〉 ∈ CN , an efficiently implementable unitary B ∈ CN×N with
B |0〉 = |b〉 and an error cap ε ∈

(
0, 1004π

)
.

Return: A quantum state |x̃〉 ∈ CN with ‖|x〉 − |x̃〉‖ ≤ ε, where |x〉 corresponds to the normalization
of a vector x ∈ CN with Ax = |b〉.

1: Let t0 := 200κ
ε and t := max{dlog2(t0/2π) + 1e, 5}.

2: |Ψ〉 := |0〉 |0〉 |0〉 ∈ CTN ·3 empty t+ n qubit-register with an ancilla qutrit.
3: |Ψ〉 ← (T ⊗ B ⊗ E3) |Ψ〉
4: |Ψ〉 ← (CHET,N,A,t0 ⊗E3) |Ψ〉
5: |Ψ〉 ← (QFT†

T ⊗ET ·3) |Ψ〉
6: |Ψ〉 ← R |Ψ〉 with R as defined below.
7: |Ψ〉 ← (QFTT ⊗ET ·3) |Ψ〉
8: |Ψ〉 ← (CHE†

T,N,A,t0
⊗E3) |Ψ〉

9: |Ψ〉 ← (T † ⊗ EN ·3) |Ψ〉
10: Perform amplitude amplification using Algorithm 1 on the previous steps to measure a 1 for the state
|Ψ〉 obtained from the previous steps with the function χ : {0, 1}TN ·3 → {0, 1}, s.t. χ(x, y, z) = 1, iff
z = 1 for any x ∈ [0, T − 1]N and y ∈ [0, N − 1]N.

11: return the n-qubit register of |Ψ〉.

The unitaries T ∈ CT×T and B ∈ CN×N are characterized by the following actions on |0〉:

T |0〉 =
√

2

T

T−1∑
τ=0

sin

(
π
(
τ + 1

2

)
T

)
|τ〉 B |0〉 = |b〉 (3.2.7)

We give a more detailled description and the implementation of T further below. Furthermore, the
so-called filter functions f, g : R≥0 →

[
0, 12

]
and their associated qutrit rotation unitary shall be defined

as

fκ(λ) :=


0 λ < 1

2κ
1
2 sin

(
π
2 ·

λ− 1
2κ

1
κ− 1

2κ

)
1
2κ ≤ λ <

1
κ

1
2κλ

1
κ ≤ λ

gκ(λ) :=


1
2 λ < 1

2κ
1
2 cos

(
π
2 ·

λ− 1
2κ

1
κ− 1

2κ

)
1
2κ ≤ λ <

1
κ

0 1
κ ≤ λ

(3.2.8)

R :=

T−1∑
θ=0

|θ〉 〈θ| ⊗ EN ⊗R

arcsin

 f
(

2πθ
t0

)
√
1− g2

(
2πθ
t0

)
 , arcsin

(
g

(
2πθ

t0

)) (3.2.9)

where R is constructed as in the proof of Theorem 2.17, here without additional helper qubits. Let
furthermore f := fκ and g := gκ, as κ is fixed.

1

|0〉 T
CHET,N,A,t0

QFT†
T

R

QFTT

CHE†
T,N,A,t0

T † |0〉

|0〉 B |x〉

|0〉

Figure 8: Circuit diagram for the HHL algorithm. On the right, the register states for a perfect result are
presented. We measure a 1, indicating a good result. We have not illustrated the amplitude amplification.

Initialization Procedures

29

As explained, we require two procedures T and B to prepare the first two registers of t and n qubits
respectively, which we will explain in this paragraph starting with T . At first sight, it is not obvious, that
the condition in Equation (3.2.7) results in a valid quantum state. We introduce the following lemma.
Lemma 3.3. For any x ∈ C it holds that:

sin2
(x
2

)
=

1− cos(x)

2
(3.2.10)

Proof. We use Theorem B.4 and Theorem B.3 to obtain:

cos(2x) = cos2(x)− sin2(x) = 1− 2 sin2(x) (3.2.11)

Solving after sin2(x) and substituting x for x/2 yields the statement. ■

The next lemma then confirms the claim from before.
Lemma 3.4. Let T := 2t, t ∈ N≥1 and τ ∈ [0, T − 1]N. It holds, that

τ∑
k=0

2

T
sin2

(
π(k + 1

2)

T

)
=

1

T

(
τ + 1−

sin
(
2(τ + 1) πT

)
2 sin

(
π
T

))
(3.2.12)

Proof. We can use Lemma 2.22 from Section 2.5. Consider for any k ∈ [0, τ]N, using Lemma 3.3:

sin2
(
π(k + 1

2)

T

)
= sin2

(
(2k + 1)

π

2T

)
=

1

2

(
1− cos

(
(2k + 1)

π

T

))
(3.2.13)

So
τ∑

k=0

2

T
sin2

(
π(k + 1

2)

T

)
=

1

T

(
τ + 1−

τ∑
k=0

cos
(
(2k + 1)

π

T

))
(3.2.14)

=
1

T

(
τ + 1−

sin
(
2(τ + 1) πT

)
2 sin

(
π
T

))
(3.2.15)

under the use of Lemma 2.22. ■

Inserting τ = T − 1 gives the claim, that T gives a valid quantum state. This closed formula further
gives the following claim.
Theorem 3.5. The procedure T can be implemented to run in time O(t) with arbitrary precision.
Proof. We wish to give an antiderivative P of a probability density function p : [0, π] 7→ [0, 1] with for
any τ ∈ [0, T − 1]N ∫ xt,τ

R

xt,τ
L

p =
2

T
sin2

(
π(τ + 1

2)

T

)
(3.2.16)

where xt,τL := π τ
T , x

t,τ
R := π τ+1

T . Let

P : [0, π]→ [0, 1], x 7→
∫ x

0

p (3.2.17)

Then for any τ ∈ [0, T − 1]N:

P (xt,τR) =

∫ xt,τ
R

0

p =

τ∑
k=0

2

T
sin2

(
π(k + 1

2)

T

)
=

1

T

(
τ + 1−

sin
(
2(τ + 1) πT

)
2 sin

(
π
T

))
(3.2.18)

using Lemma 3.4. Consider the equation x = π(τ+1)
T , from which we get τ = T

π x − 1 to substitute τ in
Equation (3.2.18). Letting x be loose gives

P (x) =
1

T

(
T

π
x− sin(2x)

2 sin
(
π
T

)) (3.2.19)

from which we obtain, that p is efficiently integrable, as efficient approximations of the sine exist. The
use of Theorem 2.7 gives the claim. ■

30

Remark 3.6. The values of Equation (3.2.16) resemble the normal distribution, as Figure 9 shows.
Furthermore, p roughly resembles a sigmoidal function, as the cumulative sums of the values in Equa-
tion (3.2.16) show, as pictured in Figure 10. Especially the first observation may give some insight into
why these coefficients were chosen, although we have not yet made the connection to the error analysis.
Remark 3.7. The problem of recovering an efficiently integrable probability density function, or its
associated integral function, from given definite integrals may be interesting for the general quantum
algorithmic toolbox. The proof of Theorem 3.5 performs such a task for a very specific example, where
much trigonometric structure is indeed involved, but finding such simple expressions may be hard in
general. Uncountably many functions may suffice for such a task and canonical continuous functions for
such interpolation tasks exist, one may look at Lagrangian interpolation, see [17, p. 192], but it is still
unclear, if canonical efficiently computable functions for such interpolations exist.

Figure 9: Sketch of the amplitudes, here for t = 5 and scaled by 16.

Figure 10: Sketch of the cumulative amplitude sums, here for t = 5 and scaled by 1. The associated
integral function of the probability distribution p, P , as found in the proof of Theorem 3.5, is also
depicted.

As for the procedure B: We have discussed the problem of quantum state generation in Section 2.2.
Efficient state generation is a key issue here, as an inefficient state generation procedure will drown the
runtime of the HHL algorithm, as can be seen in Algorithm 2.

3.3 Analysis for Well-Conditioned Matrices

We present the analysis from [3] with slightly different constants in the results. We assume, that none
of the subprocedures produce an error, which one may consider to be a reasonable assumption due to
our previous discussion on the complexity for keeping a low error gap for each subprocedure. Consider
again the assumptions made in Section 3.1.

First Steps

We first follow along the description of the algorithm in Algorithm 2 and observe the change of the
registers. Initializing the first two registers yields

|0〉 |0〉 |0〉 T ⊗B⊗E37−−−−−−→
√

2

T

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
|τ〉 |b〉 |0〉 =

√
2

T

N∑
j=1

βj

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
|τ〉 |vj〉 |0〉

(3.3.1)

31

After that, applying CHET,N,A,t0 ⊗E3 with effect on the first two registers and the use of Theorem 1.21
gives √

2

T

N∑
j=1

βj

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
CHET,N,A,t0 |τ〉 |vj〉 |0〉 (3.3.2)

=

√
2

T

N∑
j=1

βj

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
eiλjτt0/T |τ〉 |vj〉 |0〉 (3.3.3)

Now we apply QFT†
T ⊗EN ·3, which, after some reordering, results in√

2

T

N∑
j=1

βj

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
eiλjτt0/T QFT†

T |τ〉 |vj〉 |0〉 (3.3.4)

=

√
2

T

N∑
j=1

βj

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
eiλjτt0/T

T−1∑
k=0

e−2πikτ/T |k〉 |vj〉 |0〉 (3.3.5)

=

√
2

T

N∑
j=1

βj

T−1∑
k=0

(
T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
e

iτ
T (λjt0−2πk)

)
|k〉 |vj〉 |0〉 (3.3.6)

(1)
=

N∑
j=1

βj

T−1∑
k=0

αj,k |k〉 |vj〉 |0〉 (3.3.7)

(1) Note that we define for these indices j, k the values αj,k ∈ C and δj,k ∈ R via

αj,k :=

√
2

T

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
e

iτ
T δj,k δj,k := λjt0 − 2πk (3.3.8)

This intermediate result corresponds to a ”good” approximation of the eigenvalues of A, as we will prove
in the following paragraph. We only make one small observation.
Observation 3.8. We have

∑T−1
k=0 |αj,k|2 = 1. This follows by considering |b〉 = |vj〉 and thus having

N∑
j=1

βj

T−1∑
k=0

αj,k |k〉 |vj〉 |0〉 =
T−1∑
k=0

αj,k |k〉 |vj〉 |0〉 (3.3.9)

be a valid quantum state with the αj,k values being independent of βj . Furthermore, we have |αj,k| ≤ 1.

0 2π
...
...
...

2π(k − 1) 2πk
...
...
...

2π(T − 2) 2π(T − 1)λjt0

|δj,0|
|δj,1|

|δj,k−1|
|δj,T−1|

|δj,T−2|
|δj,k|

Figure 11: A line representing [0, 2π(T − 1)] with marks for understanding the behavior of the approx-
imations for one δj,k value. We assume an appropriate choice for t, as described in this text. In this
case, the approximation seems to be of poor quality, increasing t will improve the accuracy as then the
interval [2π(k − 1), 2πk] will be split in half and 2π(2k − 1) will give a better approximation.

Analysis of the Phase Estimation

The following analysis of the coefficients αj,k is based on the original HHL paper [3, pp. 10-11] and
Dervovic et al. [12, pp. 32-33], but we do not fully agree with the assumptions used. Our goal is to
prove, that for each j ∈ [1, N]N, there are at most two values k ∈ [0, T − 1]N, where the coefficients αj,k

32

concentrate at, meaning that the sum of their squared magnitudes is large in comparison to the magnitude
sums of the exponentially many other approximations, and, such that 2πk/t0 is a good approximation of
λj . To get some intuition on this analysis, notice, that the value δj,k becomes very small if 2πk/t0 ≈ λj .
We try to carry this intuition over to the coefficients αj,k. The main result of this paragraph will be the
following theorem.

Theorem 3.9. For the HHL phase estimation of an eigenvalue λj with j ∈ [1, N]N arbitrary, but fixed,
it holds, that ∑

k∈[0,T−1]N
|δj,k|≥2π

|αj,k|2 <
7

10
(3.3.10)

Let j, k as in Equation (3.3.8) be arbitrary, but fixed with |δj,k| ≥ 2π.
Observation 3.10. By definition and λj ∈

[
1
κ , 1
]
, we have |δj,k| ≤ max({t0, 2π(T − 1)}). Since, due to

the algorithm description, we assume a choice of t, s.t. t0 ≤ 2π(T − 1), as T ≥ t0/2π + 1, we get

2π ≤ |δj,k| ≤ 2π(T − 1)

We disagree with the assumption by the HHL authors, that |δi,j | ≤ T/10 [3, p. 11]. If one applies
the algorithm on any unit matrix and chooses t0 to be incredibly high, whilst using only few helper
qubits, the bound will not hold. In the following, we present a detailled derivation of the alternative
representation of the αj,k values, which can be found in [3, p. 11].
Lemma 3.11. The following bounds hold for any x ∈ R≥0:

x− x3

6
≤ sin(x) ≤ x (3.3.11)

With strict inequalities for x 6= 0.
The lower bound is not obvious. We present the proof of this rather elementary bound in Appendix A.
Lemma 3.12. The following statements hold.

(i) For δj,k /∈ {±π}, it holds, that

αj,k = −ei
δj,k
2 (1− 1

T)

√
2 cos

(
δj,k
2

)
T

cos
(

δj,k
2T

)
sin
(

π
2T

)
sin
(

δj,k+π
2T

)
sin
(

δj,k−π
2T

) (3.3.12)

(ii) The function

ξ : (−2π, 2π) \ {±π} → R, δ 7→ 2

T 2
sin2

(π

2T

) cos2
(
δ
2

)
cos2

(
δ
2T

)
sin2

(
δ+π
2T

)
sin2

(
δ−π
2T

) (3.3.13)

can be continuously extended to (−2π, 2π).

33

Proof. (i) We give thorough explanations to the following large computation.

αj,k =

√
2

T

T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
exp

(
iτ

T
δj,k

)
(3.3.14)

(1)
=

1

i
√
2T

T−1∑
τ=0

exp

(
iτ

T
δj,k

)(
exp

(
i
π(τ + 1

2)

T

)
− exp

(
−i
π(τ + 1

2)

T

))
(3.3.15)

(2)
=

1

i
√
2T

(
exp

(
iπ

2T

) T−1∑
τ=0

exp

(
iτ
δj,k + π

T

)
− exp

(
− iπ
2T

) T−1∑
τ=0

exp

(
iτ
δj,k − π

T

))
(3.3.16)

(3)
=

1

i
√
2T

(
exp

(
iπ

2T

)
1− ei(δj,k+π)

1− ei
δj,k+π

T

− exp

(
− iπ
2T

)
1− ei(δj,k−π)

1− ei
δj,k−π

T

)
(3.3.17)

(4)
=

1 + eiδj,k

i
√
2T

(
e−i

δj,k
2T

e−i
δj,k+π

2T − ei
δj,k+π

2T

− e−i
δj,k
2T

e−i
δj,k−π

2T − ei
δj,k−π

2T

)
(3.3.18)

(5)
=

(1 + eiδj,k)e−i
δj,k
2T

i
√
2T

 1

−2i sin
(

δj,k+π
2T

) − 1

−2i sin
(

δj,k−π
2T

)
 (3.3.19)

(6)
= ei

δj,k
2 (1− 1

T)
cos
(

δj,k
2

)
√
2T

sin
(

δj,k−π
2T

)
− sin

(
δj,k+π

2T

)
sin
(

δj,k+π
2T

)
sin
(

δj,k−π
2T

) (3.3.20)

(7)
= −ei

δj,k
2 (1− 1

T)

√
2 cos

(
δj,k
2

)
T

cos
(

δj,k
2T

)
sin
(

π
2T

)
sin
(

δj,k+π
2T

)
sin
(

δj,k−π
2T

) (3.3.21)

(1) Use the definition of the sine with the complex exponential function, see Definition B.2.
(2) Reorder the terms wrt. the dependency on τ .
(3) Use the geometric sum. With δj,k /∈ {±π}, it is assured, that we do not add up ones, as
otherwise the geometric sum does not apply here in this form.
(4) Notice ei(δj,k+π) = −eiδj,k = ei(δj,k−π) by definition. Thus, we first factor out 1+eiδj,k . Expand
the terms by e−i

δj,k+π

2T and e−i
δj,k−π

2T , through which the factors e iπ
2T and e−

iπ
2T get cancelled out.

(5) Factor out the numerators and use the definition of the sine via the complex exponential
function, see Definition B.2, in the denominators.
(6) Factoring out 1/(−2i) from the sums yields a denominator of 2

√
2T . Now, using the exponential

form of the cosine function for once, we also obtain:

(1 + eiδj,k)e−i
δj,k
2T = (e−i

δj,k
2 + ei

δj,k
2)ei

δj,k
2 (1− 1

T) = 2 cos

(
δj,k
2

)
ei

δj,k
2 (1− 1

T) (3.3.22)

At last, we expand the right terms. This fixes one calculation mistake of the original paper: The√
2 is part of the denominator.

(7) We use the sine addition theorem, see Theorem B.4. With the asymmetry of the sine function,
and the symmetry of the cosine function, this yields:

sin

(
δj,k − π

2T

)
− sin

(
δj,k + π

2T

)
= cos

(
δj,k
2T

)
sin

(
−π
2T

)
− cos

(
δj,k
2T

)
sin
(π

2T

)
(3.3.23)

= −2 cos
(
δj,k
2T

)
sin
(π

2T

)
(3.3.24)

(ii) Notice ξ(−δ) = ξ(δ) due to sin2
(−δ+π

2T

)
sin2

(−δ−π
2T

)
= sin2

(
δ+π
2T

)
sin2

(
δ−π
2T

)
and the axial symme-

try of the cosine. It thus suffices to prove the existence of limδ→π ξ(δ). We have

lim
δ→π

cos
(
δ
2

)
cos
(

δ
2T

)
sin
(
δ+π
2T

)
sin
(
δ−π
2T

) =
∂
∂δ cos

(
δ
2

)
cos
(

δ
2T

)∣∣
π

1
2T sin

(
π
T

) (3.3.25)

34

using the rule of Bernoulli-L’Hospital [37, pp. 150-151] and

∂

∂δ
sin

(
δ + π

2T

)
sin

(
δ − π
2T

)
=

1

2T

(
cos

(
δ + π

2T

)
sin

(
δ − π
2T

)
+ sin

(
δ + π

2T

)
cos

(
δ − π
2T

))
(3.3.26)

=
1

2T
sin

(
δ

T

)
(3.3.27)

using the product rule of differential calculus and Theorem B.4. Taking the continuity of δ 7→ δ2

into account, we obtain the statement.
This concludes the proof. ■

Part (ii) of this lemma will not be used, its importance lies in the fact, that the αj,k values do not ”blow
up” for values |δj,k| near π. We now present a descriptive analytic proof for the bound concentration,
i.e., that for j and k with |δj,k| < 2π, we have a good approximation of λj by 2πk

t0
. It holds, that

|αj,k|
(1)
=

√
2
∣∣∣cos(δj,k

2

)∣∣∣
T

∣∣∣cos(δj,k
2T

)∣∣∣ sin (π
2T

)
sin
(

δj,k+π
2T

)
sin
(

δj,k−π
2T

) (2)
<

π√
2T 2

1

sin
(

δj,k+π
2T

)
sin
(

δj,k−π
2T

) (3.3.28)

(1) Taking the complex magnitude respects products,
∣∣∣− exp

(
i
δj,k
2

(
1− 1

T

))∣∣∣ = 1 and π
2T ∈

(
0, π

64

)
,

where the sine is positive. Furthermore, for δj,k > 0, we have δj,k+π
2T ,

δj,k−π
2T ∈

[
π
2T , π −

π
2T

]
, where the

sine is also positive. We also have sin
(

−δj,k+π
2T

)
sin
(

−δj,k−π
2T

)
= sin

(
δj,k−π

2T

)
sin
(

δj,k+π
2T

)
, so we can

leave out taking the magnitude again.

(2) Since | cos | ≤ 1 with strict inequality for arguments outside of πZ, and Lemma 3.11.

We want to further study the result analytically.
Lemma 3.13. Define the auxiliary function

h : R \ {2πkT ± π | k ∈ Z} → R>0, δ 7→
π√
2T 2

1

sin
(
δ+π
2T

)
sin
(
δ−π
2T

) (3.3.29)

and let h± := h|[±2π(T−1),±2π]∪[±2π,±2π(T−1)] each yielding h+ and h−. We have

(i) h−(−δ) = h+(δ) for δ ∈ [2π, 2π(T − 1)].

(ii) h+ is symmetric wrt. πT .

(iii) h+|[2π,πT] strictly descends.

Proof. (i) We have proven this in (1) for Equation (3.3.28).

(ii) If δ ∈ [2π, πT], then 2πT − δ ∈ [πT, 2π(T − 1)]. Especially

sin

(
(2πT − δ) + π

2T

)
sin

(
(2πT − δ)− π

2T

)
= sin

(
π − δ − π

2T

)
sin

(
π − δ + π

2T

)
(3.3.30)

= sin

(
δ − π
2T

)
sin

(
δ + π

2T

)
(3.3.31)

(iii) As ∂
∂δ sin

(
δ+π
2T

)
sin
(
δ−π
2T

)
= 1

2T sin
(
δ
T

)
≥ 0 in [2π, πT], see Equation (A.0.7), the function stricly

descends. Note, that the right bound does not matter by the definition of strict monotonicity.
■

Remark 3.14. The consequence of this lemma is, that we can reduce the calculation of h for any δj,k by
mirroring the value at most twice, once around x = 0 and once around x = πT . As the δj,k values are
evenly spread on an interval of length 2π(T − 2), we can further bound any sum over all αj,k values by
only considering the values of h in [2π, π(T − 1)]. We shall use this thought in the proof of Theorem 3.9.

35

Lemma 3.15. Defining for T := 2t, t ∈ N≥5

l↑ : [2π, πT]→ R, δ 7→ sin

(
δ + π

2T

)
sin

(
δ − π
2T

)
l↓ : [2π, πT]→ R, δ 7→ c1

π2

δ2

T 2
(3.3.32)

where c1 := 0.9975 < sin
(
π
2 −

π
64

)
, we have l↑ > l↓.

We leave out the technicalities of this lemma and prove it in the appendix, see Appendix A. Consider
the illustration with a summary of the argument in Figure 12.

1

x = 2π x = π
2T x = πT

Figure 12: Graph of l↑ and l↓ für t = 5. The x-axis is scaled by 1/T , the y-axis is scaled by 2 and the
entire plot is scaled by 2. The vertical lines x = 2π, x = π

2T and x = πT are marked. In the interval
[2π, πT/2], l↑ grows faster than l↓, while being larger at the interval boundaries. In [πT/2, πT], l↑ is
convex, and larger at the boundary points, while l↓ is concave. The convexity and concavity argument
is illustrated by the dotted lines. These facts conclude l↑ > l↓. The rigorous formulation can be found
in the appendix, as said.

Lemma 3.16. For 2π ≤ δj,k ≤ πT , we have

|αj,k| <
22

δ2j,k
(3.3.33)

Proof. Lemma 3.15 and Lemma 3.12 directly give us

|αj,k| <
π√
2T 2

π2

c1

T 2

δ2j,k
<

22

δ2j,k
(3.3.34)

■

Remark 3.17. For a guarantee of a good approximation of the eigenvalues, Equation (A.0.12) shows, that
at least five qubits are needed.
Now we are able to give the proof of the main theorem of this subsection.

Proof of Theorem 3.9. Due to the behavior of h in Lemma 3.13, we have

∑
k∈[0,T−1]N
|δj,k|≥2π

|αj,k|2
(1)
<

T−1∑
k=1

h(2πk)2
(2)
< 2

∞∑
k=1

222

16π4k4
(3)
= 2 · 222

16 · 90
<

7

10
(3.3.35)

(1) The values δj,k are positioned in distance 2π to each closest neighbor. Consider for each k, that
|δj,k| ∈ [2πk′, 2π(k′+1)] for some k′ ∈ Z. With the monotonicity behavior of h, as in Lemma 3.13, we thus
have the upper bound using h2 at either 2πk′ or 2π(k′+1) for this value |αj,k|2. To observe the statement
for the sum, consider for a k with δj,k < 0, that mirroring, i.e. taking h2(−δj,k) for the strict upper
bound, and then mirroring at πT , gives the upper bound, and that no other element is then contained
in the associated 2π-sized interval, in which 2πT + δj,k lies, as then we have δj,0 − δj,T−1 > 2π(T − 1),
which is a contradiction to the definition of the δj,k values.

36

(2) Following our previous considerations, we upper bound the values for δj,k ∈ [2π, πT] twice and let
them tend to infinity for a constant upper bound.

(3) Using Theorem B.7.

■

Remark 3.18. With the last theorem proven, we will now use the notation |λ̃k〉 := |k〉, k ∈ [0, T − 1]N,
following [3, p. 6], for the basis states, where λ̃k := 2πk

t0
. Note that with this notation, we indicate that

for some such k, λ̃k gives a good approximation for some eigenvalue λj , j ∈ [1, N]N.
The following theorem further elaborates the existence of a close approximation.

Theorem 3.19 (Existence of Eigenvalue Approximations). The following statements hold for any fixed
j ∈ [1, N]N.

(i) There is a k ∈ [0, T − 1]N with |δj,k| < 2π.

(ii) For every k ∈ [0, T − 1]N with |δj,k| < 2π, we have

|λ̃k − λj | <
1

4κ
(3.3.36)

and thus

λ̃k ∈
(

3

4κ
, 1 +

1

4κ

)
(3.3.37)

Proof. We prove the statements in series.

(i) Fix j and consider under the condition δj,k ≤ 0

0 ≤ −δj,k = 2πk − λjt0 < 2π ; λjt0
2π

< k <
λjt0
2π

+ 1 (3.3.38)

as λjt0
2π ∈ (0, T − 1), we may thus choose k :=

⌊
λjt0
2π

⌋
or k = 1 for λjt0

2π < 1.

(ii) From the assumption and the definition of δj,k, we directly have

|λj − λ̃k| =
|δj,k|
t0

<
2π

t0
=

πε

100κ
∈
(
0,

1

4κ

)
(3.3.39)

The second statement follows directly.

■

This proof is the main reason for our choice of ε. In the second next subsection, we will also see the
reason for our choice of t0.

Inversion of the Eigenvalue Approximations

With the eigenvalue approximations stored, we want to transfer them over into the amplitudes to obtain
a form as in Corollary 1.12. The goal, as in Equation (3.2.2), is to obtain

N∑
i=1

βi
λi
|vi〉 (3.3.40)

in the input register. Rotating conditioned on a map of form λ 7→ arcsin (C/λ), where C ∈ (0, λmin (A)] ⊇
(0, 1κ] for normalization and λmin (A) as in Definition 1.23, would suffice for this task, as we can verify by
following along the calculations of the proof of Theorem 2.17. By measuring the helper qutrit and using
amplitude amplification, we could obtain an approximation of the target state. The problem with this

37

approach stems from the case, when the eigenvalues are incredibly small. Errors in the phase estimation,
which can be quite large simply due large δj,k values, see Figure 11, and by a poorly chosen t0 value, can
lead to poor result states. We need a more numerically stable procedure [12, p. 33].
The HHL authors have their own procedure R, as mentioned in Algorithm 2. The filter functions are
piecewise continuous functions, induced by concatenations of the sine, cosine and inversion, as well as
constant functions. Especially, in

[
1
2κ ,

1
κ

)
, the sine and cosine functions have been concatenated with

a linear transform, which transforms this interval into
[
0, π2

)
isomorphically. This helps us understand

the filter functions more: We want an approximately continuous function f , that slowly descends for
eigenvalues, which are not in the desired range, and a function g, which becomes large for bad eigenvalues
to fend off unacceptibly small eigenvalues. For an illustration, consider Figure 13. We further need a
qutrit and this specific choice of the functions for a working analysis of the error.

1
2

1
2κ

1
κ

g f

Figure 13: Sketch of the filter functions. Here an example for a matrix with eigenvalues 1, 4, 7, 10 and
thus κ = 10. The horizontal axis was scaled by 20, the vertical one by 2. One can very well see the
rather sudden drop of g and the simultaneous entry of f in the interval

[
1
2κ ,

1
κ

]
.

The figure also demonstrates the effect of upper bounding κ, which is that tinier eigenvalues are permitted
for inversion. The qutrit rotation technique described in Theorem 2.17 is also only applicable due to the
following lemma.
Lemma 3.20. We have

f2 + g2 ≤ 1

4
(3.3.41)

with equality in
[
0, 1κ

]
.

Proof. Following the definitions in Equation (3.2.8), in
[
0, 1

2κ

)
, f2 + g2 = 1

4 , in
[

1
2κ ,

1
κ

)
, we use Theo-

rem B.4 to have f2 + g2 = 1
4 and in

[
1
κ ,∞

)
, f2 + g2 ≤ 1

4 with f2
(
1
κ

)
= 1

4 . ■

By application of R, we obtain:

N∑
j=1

βj

T−1∑
k=0

αj,k |λ̃k〉 |vj〉
(√

1− f2(λ̃k)− g2(λ̃k) |0〉+ f(λ̃k) |1〉+ g(λ̃k) |2〉
)

(3.3.42)

As in Figure 8, we uncompute the first two registers. Keeping the concentration of the eigenvalue
approximations in mind and following the calculations from before we gave the proof of Theorem 3.9,
we apply (T † ⊗ EN ·3)(CHE†

T,N,A,t0
⊗E3)(QFTT ⊗EN ·3) after making an approximation, giving

N∑
j=1

βj

T−1∑
k=0

αj,k |λ̃k〉 |vj〉
(√

1− f2(λ̃k)− g2(λ̃k) |0〉+ f(λ̃k) |1〉+ g(λ̃k) |2〉
)

(3.3.43)

≈
N∑
j=1

βj

T−1∑
k=0

αj,k |λ̃k〉 |vj〉
(√

1− f2(λ̃j)− g2(λ̃j) |0〉+ f(λ̃j) |1〉+ g(λ̃j) |2〉
)

(3.3.44)

7→
N∑
j=1

βj |0〉 |vj〉
(√

1− f2(λ̃j)− g2(λ̃j) |0〉+ f(λ̃j) |1〉+ g(λ̃j) |2〉
)

(3.3.45)

38

where λ̃j denotes the best approximation of λj for each j. Due to the possible entanglement of the ancilla
qutrit with the clock register, we use Theorem 3.9 to enable this approximation. We now apply amplitude
amplification with the procedure so far and χ as defined in Algorithm 2 to perform a measurement of
a 1 in the ancilla qutrit. So for one measurement, assuming, that λ̃j ∈

[
1
κ ,∞

)
for all j ∈ [1, N]N, we

obtain the state ∑N
j=1 βj

1
2κλ̃j

|vj〉√∑N
j=1 |βj |2

∣∣∣ 1
2κλ̃k

∣∣∣2 ≈
∑N

j=1
βj

λj
|vj〉√∑N

j=1

∣∣∣βj

λj

∣∣∣2 with probability
N∑
j=1

|βj |2
∣∣∣∣∣ 1

2κλ̃j

∣∣∣∣∣
2

(3.3.46)

in the input register. We now make the latter parts of the argument precise.

Choosing the Evolution Time

For the phase estimation procedure to be successful, a well-chosen evolution time t0 is required. We
follow along the error analysis of Harrow et al. [3, pp. 7-10] for the following paragraph.
First, we need to generalize a small definition from real analysis. Recall the analytical concept of
Lipschitz-continuity.

Definition 3.21. Let m,n ∈ N≥1 and D ⊆ Rm. A function f : D → Rn is called Lipschitz-continuous
with Lipschitz-constant C ∈ R≥0, if for any λ, λ′ ∈ D, it holds that:

‖f(λ)− f(λ′)‖ ≤ C‖λ− λ′‖ (3.3.47)

We also call f C-Lipschitz.

Theorem 3.22. Let U ⊆ R be an open, convex subset and f : U → Rn be continuous differentiable. f is
Lipschitz-continuous, iff f ′ = (f ′1, ..., f

′
n) is bounded. Furthermore, if for a C ∈ R≥0, we have ‖f ′‖ ≤ C,

then f is C-Lipschitz.

Proof. Let λ, λ′ ∈ U with λ 6= λ′.
(⇒) Let C ∈ R>0 be the Lipschitz-constant. We get:∥∥∥∥f(λ)− f(λ′)λ− λ′

∥∥∥∥ ≤ C (3.3.48)

Taking the limit for λ′ → λ yields ‖f ′(λ)‖ ≤ C.
(⇐) Let C ∈ R>0, s.t. ‖f ′‖ ≤ C. Due to convexity, {λ + t(λ′ − λ) | t ∈ [0, 1]} ⊂ U . Using the
multi-dimensional mean value theorem [8, p. 84] and the monotonicity of the integral, we obtain:

‖f(λ′)− f(λ)‖ =
∥∥∥∥∫ 1

0

f ′(λ+ t(λ′ − λ)) dt
∥∥∥∥ |λ′ − λ| ≤ C|λ′ − λ| (3.3.49)

Which is the statement. By that, we also have, that f is C-Lipschitz. ■

Remark 3.23. Note that a Lipschitz-constant C is an upper-bound on the derivative, and an upper-bound
on the derivative C is a Lipschitz-constant.
Remark 3.24. We possibly could relax the assumptions on convexity, continuous differentiability and
allow more arguments, but this suffices for our use case.
From the qutrit rotation performed in Section 3.3, we define the following map:

|h(·)〉 : R→ C3, λ 7→ |h(λ)〉 :=
√
1− f2(λ)− g2(λ) |0〉+ f(λ) |1〉+ g(λ) |2〉 (3.3.50)

We now prove three lemmata.
Lemma 3.25. The map |h(·)〉 is π

2κ-Lipschitz.
This proof is a rewrite of the proof at [3, p. 7].

39

Proof. The statement is clear in
[
0, 1

2κ

)
, as the filter functions are constant there, meaning that |h(λ)〉−

|h(λ′)〉 = 0 for any λ, λ′ ∈
[
0, 1

2κ

)
, and the statement follows from the definition of norms. |h(·)〉 is

continuous and differentiable in R \
{

1
2κ ,

1
κ

}
, due to the components. Due to Theorem 3.22, we may

bound the derivatives in each subinterval. In
[

1
2κ ,

1
κ

)
, we have, using Theorem B.3,

∂

∂λ
|h(λ)〉 = ∂

∂λ

(
1

2
sin

(
π

2

λ− 1
2κ

1
κ −

1
2κ

)
|1〉+ 1

2
cos

(
π

2

λ− 1
2κ

1
κ −

1
2κ

)
|2〉
)

(3.3.51)

=
1

2

π

2

1
1
κ −

1
2κ

(
cos

(
π

2

λ− 1
2κ

1
κ −

1
2κ

)
|1〉 − sin

(
π

2

λ− 1
2κ

1
κ −

1
2κ

)
|2〉
)

(3.3.52)

Taking the norm, we get
∥∥ ∂
∂λ |h(λ)〉

∥∥ = π
2κ. We now look at

[
1
κ ,∞

)
. We get:

∂

∂λ
|h(λ)〉 = ∂

∂λ

(√
1− 1

4κ2λ2
|0〉+ 1

2κλ
|1〉

)
=

1

2κ2λ3
1

2

1√
1− 1/(4κ2λ2)

|0〉 − 1

2κλ2
|1〉 (3.3.53)

We calculate the squared norm to receive∥∥∥∥ ∂∂λ |h(λ)〉
∥∥∥∥2 =

1

4κ4λ6
1

4

1

1− 1/(4κ2λ2)
+

1

4κ2λ4
=

1

4κ2λ4

(
1

4κ2λ2 − 1
+ 1

)
(1)

≤ κ2

4

(
4

3

)
=
κ2

3
(3.3.54)

(1) We use 1
κ ≤ λ.

The statement is thus true. ■

The following lemma, slightly adjusted from [3, pp. 9-10], gives a more specialized Lipschitz-type condi-
tion. Denote fj := f(λj) and f̃k := f(λ̃k), and analogously gj := g(λj), g̃k := g(λ̃k) for any j ∈ [1, N]N,
k ∈ [0, T − 1]N.
Lemma 3.26. It holds, that

(f̃k − fj)2 + (g̃k − gj)2 ≤ π2κ
2

t20
δ2j,k(f

2
j + g2j) (3.3.55)

Proof. We perform four case distinctions.

I. First, consider the case, where λj ≥ 1
κ and λ̃k ≥ 1

κ as well, then gj = g̃k = 0 and we have using
the definitions, δj,k

t0
=

λjt0
t0
− 2πk

t0
= λj − λ̃k and the assumption:

f̃k − fj =
1

2κ

λj − λ̃k
λ̃kλj

≤ 1

2

δj,k
t0

1

λj
< π

κ

t0
δj,k

1

2κλj
= π

κ

t0
δj,kfj (3.3.56)

Squaring both sides gives the statement.

II. Now consider the case, where again λj ≥ 1
κ and now λ̃k ∈

[
0, 1

2κ

)
. Then f̃k = 0, g̃k = 1

2 and the
claim is thus

f2j +
1

4
≤ π2κ

2

t20
δ2j,kf

2
j (3.3.57)

We first have

π2

2

κ2

t20
δ2j,kf

2
j =

π2

8

(
λj − λ̃k
λj

)2

>
π2

8

1

4κ2λ2j
> f2j (3.3.58)

but we also have

π2

8

(
λj − λ̃k
λj

)2

>
π2

8

(
1− 1

2κλj

)2

≥ π2

32
>

1

4
(3.3.59)

due to infλ∈[0, 1
2κ)

(λj − λ)2 =
(
λj − 1

2κ

)2. Adding both inequalities together gives the statement.

40

III. In the case of λj ≥ 1
κ and λ̃k ∈

[
1
2κ ,

1
κ

)
, the claim becomes via Theorem B.3

(f̃k − fj)2 + g̃2k =
1

4κ2λ2j
− 1

2κλj
sin
(π
2
(2κλ̃k − 1)

)
+

1

4
≤ π2

4

(
λ̃k − λj
λj

)2

= π2κ
2

t20
δ2j,kf

2
j

(3.3.60)

which is equivalent to

κ2λ2j + 2κλj cos
(
πκλ̃k

)
+ 1 ≤ π2κ2(λj − λ̃k)2 (3.3.61)

after division by f2j on both sides and due to sin
(
x− π

2

)
= − cos(x) for all x ∈ R. Now fix λj . For

λ̃k = 1
κ , which we may insert due to the continuity of f , the statement is

(κλj − 1)2 ≤ π2(κλj − 1)2 (3.3.62)

which is true. Letting λ̃k be loose, we show, that the left hand side monotonically decreases
slower than the right hand side, from which we conclude the inequality, as otherwise the right
hand side would have already surpassed the left hand side when reaching 1

κ . Applying ∂
∂λ̃k

on
Equation (3.3.61) and dividing by 2πκ2 gives the condition

0 ≥ −λj sin
(
πκλ̃k

)
≥ π(λ̃k − λj) (3.3.63)

Both the left and right hand side in Equation (3.3.61) are thus montonically decreasing. The left
hand side becomes 0 at 1

κ . Align the associated tangent, which is[
1

2κ
,
1

κ

]
→ R, λ 7→ πκλj

(
λ− 1

κ

)
(3.3.64)

Due to sine reaching its highest growth at 1
κ , this tangent is a lower bound of the left hand side.

So we have

−λj sin
(
πκλ̃k

)
≥ πκλj

(
λ̃k −

1

κ

)
= πκλj λ̃k − πλj ≥ π(λ̃k − λj) (3.3.65)

due to κλj ≥ 1.

IV. Now consider the case, where λj < 1/κ. Then, by Lemma 3.25 and the definition of |h(·)〉,
δj,k
t0

= λj − λ̃k, as well as Lemma 3.20, we have

(f̃k − fj)2 + (g̃k − gj)2 ≤ ‖ |h(λ̃k)〉 − |h(λj)〉‖
2
≤ π2

4
κ2(λ̃k − λj)2 = π2κ

2

t20
δ2j,k(f

2
j + g2j) (3.3.66)

This concludes the proof. ■

Lemma 3.27. Let m,n ∈ N≥1, |χ〉 ∈ Cm and |ϕ〉 , |ψ〉 ∈ Cn with ‖|χ〉‖ = ‖|ϕ〉‖ = ‖|ψ〉‖ = 1. Then, we
have

〈|χ〉 ⊗ |ϕ〉||χ〉 ⊗ |ψ〉〉 = 〈ϕ|ψ〉 (3.3.67)

Proof. It holds, that

〈|χ〉 |ϕ〉||χ〉 |ψ〉〉 =

〈χ1 |ϕ〉
...

χm |ϕ〉

∣∣∣∣∣∣
χ1 |ψ〉

...
χm |ψ〉

〉 =

m∑
k=1

|χi|2
n∑

j=1

ϕjψ
∗
j =

n∑
j=1

ϕjψ
∗
j = 〈ϕ|ψ〉 (3.3.68)

■

41

Lemma 3.28. For arbitrary p, p̃ ∈ R>0, we have:
√
p
√
p̃
≥ 1− 1

2

p̃− p
p

Proof. Fix p and introduce

l : (0, 1]→ R, p′ 7→
√
p
√
p′

(3.3.69)

and expand l into the first two terms of its Taylor series around p with the Lagrangian remainder term
[38, p. 284], meaning that there is a ξ ∈ [p̃, p] ∪ [p, p̃] with

l(p̃) =
l(0)(p)

0!
(p̃− p)0 + l(1)(p)

1!
(p̃− p)1 + l(2)(ξ)

2!
(p̃− p)2 = 1− 1

2

p̃− p
p

+
1

2
· 3
4

√
p√
ξ5

(p̃− p)2 (3.3.70)

The last summand is positive, yielding the claim. ■

Now to the main theorem of this paragraph. Remember our assumption, that all subprocedures work
without error. The only source of error comes from the phase estimation performed by the gates T ,
CHET,N,A,t0 and QFT†

T , after |b〉 has been initialized. Let

P̃ := (T ⊗ EN ·3)(CHET,N,A,t0 ⊗E3)(QFT†
T ⊗EN ·3) (3.3.71)

and let P denote the version of P̃ , which approximates the eigenvalues without error. Let U then denote
the perfect HHL algorithm before the qutrit measurement using P with the result |ϕ〉 and let Ũ denote
the imperfect algorithm using P̃ with |ϕ̃〉 being its result. Thus

U = P †RP Ũ = P̃ †RP̃ (3.3.72)
|ϕ〉 = U |b〉 |ϕ̃〉 = Ũ |b〉 (3.3.73)

The following main result from [3, pp. 7-10] gives the dependence of the overall algorithm error ε of Ũ
on t0, where exact bounds have been computed here.

Theorem 3.29 (Evolution Time for a Desired Error Cap). The following statements hold.

(i) For the operator distance of the unitaries U and Ũ , it holds, that:

‖U − Ũ‖ < 17
κ

t0
(3.3.74)

(ii) Suppose we measure |ϕ〉 and |ϕ̃〉 wrt. the observable {span(B′0), span(B′1)} with B′0 := {|x〉 |y〉 |0〉 |
(x, y) ∈ [0, T − 1]N × [0, N − 1]N}, B′1 := {|x〉 |y〉 |1〉 , |x〉 |y〉 |2〉 | (x, y) ∈ [0, T − 1]N × [0, N − 1]N} and
obtain the index 1, meaning that no zero was measured in the qutrit. Then

‖|x′〉 − |x̃′〉‖ < 200
κ

t0
(3.3.75)

for the results |x′〉 , |x̃′〉 ∈ CN .

(iii) If, as assumed, A is well conditioned and thus all eigenvalues are inside of
[
1
κ , 1
]
, then after the final

measurement, we have for the resulting states |x〉 , |x̃〉 ∈ CN of the HHL algorithm

‖|x〉 − |x̃〉‖ < 200
κ

t0
(3.3.76)

Note that for the first two statements, we do not require λj ∈
[
1
κ , 1
]

for all j, but for the last one. One
way of illustrating the statement, is that, we hope, that the following diagram commutes:

42

CTN ·3 CTN ·3 CTN ·3

CTN ·3 CTN ·3 CTN ·3

P
∼=

R
∼=

∼= P †P̃ ∼=

∼=
R

∼=
P̃ †

Proof. We prove the statements in the order given.

(i) The goal is to bound the term ‖U |b〉 − Ũ |b〉‖ for an arbitrary, but fixed |b〉 ∈ CN , as that suffices
for a bound on ‖U − Ũ‖ , see Theorem 2.12. Writing out |ϕ〉 and |ϕ̃〉, we have

|ϕ〉 = U |b〉 =
N∑
j=1

βj |0〉 |vj〉 |h(λj)〉 |ϕ̃〉 = Ũ |b〉 = P̃ †
N∑
j=1

βj

T−1∑
k=0

αj,k |k〉 |vj〉 |h(λ̃k)〉 (3.3.77)

Due to Theorem 2.11, it suffices to bound Re(〈ϕ|ϕ̃〉) from below. Notice, that P̃ is unitary, thus isometric
due to Theorem 1.5. This gives us:

〈ϕ|ϕ̃〉 = 〈P̃ϕ|P̃ ϕ̃〉 =

〈
N∑
j=1

βj

T−1∑
k=0

αj,k |k〉 |vj〉 |h(λj)〉

∣∣∣∣∣∣
N∑
j=1

βj

T−1∑
k=0

αj,k |k〉 |vj〉 |h(λ̃k)〉

〉
(3.3.78)

=

N∑
j=1

T−1∑
k=0

|βjαj,k|2 〈|k〉 |vj〉 |h(λj)〉||k〉 |vj〉 |h(λ̃k)〉〉 (3.3.79)

(1)
=

N∑
j=1

T−1∑
k=0

|βjαj,k|2 〈h(λj)|h(λ̃k)〉 (3.3.80)

(1) We use Lemma 3.27.

From that, we have

Re(〈ϕ|ϕ̃〉) =
N∑
j=1

T−1∑
k=0

|βjαj,k|2 Re(〈h(λj)|h(λ̃k)〉) (3.3.81)

Using Lemma 3.25 and Theorem 2.11, we can observe:

‖|h(λj)〉 − |h(λ̃k)〉‖ =

√
2(1− Re(〈h(λj)|h(λ̃k)〉)) ≤

π

2
κ|λj − λ̃k|

(1)
=
π

2
κ

∣∣∣∣δj,kt0
∣∣∣∣ (3.3.82)

; Re(〈h(λj)|h(λ̃k)〉) ≥ 1−
π2κ2δ2j,k

8t20
(3.3.83)

(1) Since λ̃k = 2πk
t0

by definition and thus t0(λj − λ̃k) = λjt0 − 2πk = δj,k.

43

We have

‖U |b〉 − Ũ |b〉‖ 2 = 2(1− Re(〈ϕ|ϕ̃〉)) ≤ 2

1−

 N∑
j=1

T−1∑
k=0

|βjαj,k|2
(
1−

π2κ2δ2j,k
8t20

) (3.3.84)

= 2

N∑
j=1

|βj |2
T−1∑
k=0

|αj,k|2
π2κ2δ2j,k

8t20
= 2

N∑
j=1

|βj |2

 ∑
k∈N≤T−1

|δj,k|<2π

|αj,k|2δ2j,k +
∑

k∈N≤T−1

|δj,k|≥2π

|αj,k|2δ2j,k

 π2

8

κ2

t20

(3.3.85)

(1)
< 2

N∑
j=1

|βj |2

8π2 +
∑

k∈N≤T−1

|δj,k|≥2π

222

δ2j,k

 π2

8

κ2

t20

(2)
< 2

N∑
j=1

|βj |2
(
8π2 + 222 · 2

∞∑
k=1

1

4π2k2

)
π2

8

κ2

t20
(3.3.86)

(3)
= 2

(
8π2 +

2 · 112 · π2

90

)
π2

8

κ2

t20
< 261

κ2

t20
(3.3.87)

(1) We upper-bound using |δj,k| < 2π directly on the left summation. We further use Observation 3.8,
where the summation is over at most two values. On the right sum, we use Lemma 3.16 directly.

(2) In the right term, use the fact, that the δj,k values differ by an integer multiple of 2π each to upper
bound the summation term by the series

∑∞
k=1

1
4π2k2 . After obtaining the bound, which is only

dependent on κ2/t20, we use
∑N

j=1 |βj |2 = 1.
(3) We use Theorem B.7. A consequence of this calculation is

∑N
j=1 |βj |2

∑T−1
k=0 |αj,k|2δ2j,k < 106.

Since |b〉 was chosen arbitrarily and
√
261 < 17, this concludes the proof.

(ii) We use the notation from Lemma 3.26. With the operator P̃ from above, we have:

|x′〉 =
∑N

j=1 βj |0〉 |vj〉 (fj |1〉+ gj |2〉)√
p′

with p′ :=

N∑
j=1

|βj |2(f2j + g2j) (3.3.88)

|x̃′〉 =
P̃ †∑N

j=1 βj
∑T−1

k=0 αj,k |k〉 |vj〉 (f̃k |1〉+ g̃k |2〉)√
p̃′

with p̃′ :=

N∑
j=1

T−1∑
k=0

|βjαj,k|2(f̃2k + g̃2k) (3.3.89)

Notice p′, p̃′ 6= 0. The maps j 7→ f2j + g2j and (j, k) 7→ f̃2k + g̃2k may be interpreted as random variables
in this context, where the associated probabilities are given by |βj |2, and |βjαj,k|2 respectively. We thus
have p′ = E[f2j + g2j] and p̃′ = E[f̃2k + g̃2k], where we omit the usual introduction of a formal random
variable.
We now proceed with the notation from Lemma 3.26. With Lemma 3.27, it holds, that

〈x′|x̃′〉 = 〈P̃ x′|P̃ x̃′〉 =
∑N

j=1 |βj |2
∑T−1

k=0 |αj,k|2 〈fj |1〉+ gj |2〉|f̃k |1〉+ g̃k |2〉〉√
p′p̃′

=
E[fj f̃k + gj g̃k]√

p′p̃′

(3.3.90)

Furthermore, with the linearity of the expectation value [39, p. 21], we have

E[fj f̃k + gj g̃k]√
p′p̃′

=
E[f2j + g2j] + E[(f̃k − fj)fj + (g̃k − gj)gj]√

p′p̃′
(3.3.91)

=
1 + E[(f̃k − fj)fj + (g̃k − gj)gj]/p′√

1 + p̃′−p′

p′

(3.3.92)

(1)

≥

(
1 +

E[(f̃k − fj)fj + (g̃k − gj)gj]
p′

)(
1− 1

2

p̃′ − p′

p′

)
(3.3.93)

(2)
= 1− E[(f̃k − fj)2 + (g̃k − gj)2]

2p′
− E[(f̃k − fj)fj + (g̃k − gj)gj]

p′
p̃′ − p′

2p′
(3.3.94)

44

(1) By using Lemma 3.28 on 1√
1+ p̃′−p′

p′
.

(2) Using the linearity of expectation and f̃2k − f2j = (f̃k − fj)(f̃k + fj) = (f̃k − fj)(f̃k − fj +2fj), with
the same statement for g̃k and gj , we can expand

p̃′ − p′ = E[f̃2k − f2j]− E[g̃2k − g2j] (3.3.95)
= 2E[(f̃k − fj)fj] + 2E[(g̃k − gj)gj] + E[(f̃k − fj)2] + E[(g̃k − gj)2] (3.3.96)

With this formula, we have

E[(f̃k − fj)fj + (g̃k − gj)gj] =
p̃′ − p′

2
− E[(f̃k − fj)2 + (g̃k − gj)2]

2
(3.3.97)

which we insert after expanding the parentheses.

We first have

E[(f̃k − fj)2 + (g̃k − gj)2]
(1)

≤ π2κ
2

t20
E[δ2j,k(f

2
j + g2j)]

(2)
< 106π2κ

2

t20
p′ (3.3.98)

(1) Using Lemma 3.26 in the expanded sum for the expectation value.
(2) In the proof of (i), we have shown E[δ2j,k] < 106. Especially,

T−1∑
k=0

|αj,k|2δ2j,k < 106 (3.3.99)

for a fixed value of j. So we observe

E[δ2j,k(f
2
j + g2j)] =

N∑
j=1

|βj |2(f2j + g2j)

T−1∑
k=0

|αj,k|2δ2j,k < 106p′ (3.3.100)

Then

E[(f̃k − fj)fj + (g̃k − gj)gj]
(1)

≤ E

[√
(f̃k − fj)2 + (g̃k − gj)2

√
f2j + g2j

]
(3.3.101)

(2)

≤ π
κ

t0
E
[
|δj,k|(f2j + g2j)

] (3)
< 11π

κ

t0
p′ (3.3.102)

(1) Using Theorem B.6.
(2) Using Lemma 3.26.
(3) Use Theorem B.6 again, as well as E[δ2j,k(f

2
j + g2j)] < 106p′, for

E[|δj,k|(f2j + g2j)] ≤
√
E[δ2j,k(f

2
j + g2j)]E[f2j + g2j] < 11p′ (3.3.103)

Now for the last term involved, consider from the previous calculations

p̃′ − p′ = 2E[(f̃k − fj)fj + (g̃k − gj)gj] + E[(f̃k − fj)2 + (g̃k − gj)2] (3.3.104)

< 22π
κ

t0
p′ + 106π2κ

2

t20
p′ ≤ (22π + 106π2)

κ

t0
p′ (3.3.105)

where we for now assume t0 ≥ κ. Our choice of t0 later on will meet this condition.
We now have

〈x′|x̃′〉 > 1− 53π2κ
2

t20
− 11π(11π + 53π2)

κ2

t20
= 1−

(
53π2 + 11π(11π + 53π2)

) κ2
t20

> 1− 20000
κ2

t20
(3.3.106)

yielding

‖|x′〉 − |x̃′〉‖ <

√
40000

κ2

t20
= 200

κ

t0
(3.3.107)

45

(iii) Denote by p, p̃ the success probability of either measurement, i.e. the probabilities of measuring a
1 for the qutrit when measuring |ϕ〉 and |ϕ̃〉 respectively. We have p 6= 0 and especially p̃ 6= 0 due to
Theorem 3.19. Measuring after whether the qutrit becomes 1 is equivalent to measuring first wrt. to the
observable differentiating between whether the qutrit assumes the state |0〉 or a state in span({|1〉 , |2〉})
and then measuring for whether the qutrit becomes |1〉. Consider first, that |x〉 = |x′〉, as well as p = p′

due to gj = 0 for all j ∈ [1, N]N. Then, we further have

P |x̃〉 =

√
p̃′

p̃
P |x̃′〉 −

√
1

p̃

N∑
j=1

βj

T−1∑
k=0

αj,kg̃k |k〉 |vj〉 |2〉 (3.3.108)

from which we have

〈x|x̃〉 =

〈
P |x′〉

∣∣∣∣∣∣
√
p̃′

p̃
P |x̃′〉 −

√
1

p̃

N∑
j=1

βj

T−1∑
k=0

αj,kg̃k |k〉 |vj〉 |2〉

〉
=

√
p̃′

p̃
〈P |x′〉|P |x̃′〉〉 > 1− 20000

κ2

t20

(3.3.109)

from which we obtain the statement directly using (ii) and p̃ ≤ p̃′.

■

Corollary 3.30 (Choosing t0). To obtain an error smaller than ε, we set

t0 := 200
κ

ε

Especially, as ε ∈ (0, 200), we have t0 > κ.

Complexity Analysis

We analyze each step in the algorithm, starting with the initialization procedures. First, the initialization
of |b〉. Denote the runtime term of B as TB. We make no assumptions on TB, but for a fast runtime,
it should be e.g. polynomial. For the clock register initialization, we have chosen t0 := 200κ

ε , so the
condition

t0 < 2πT (3.3.110)

for the bounds of the δj,k values as in Observation 3.10 gives t := dlog2(100π
κ
ε) + 1e ∈ O(log2(κ/ε)),

or 5, which is asymptotically in the same class. The initialization of the clock register thus requires a
complexity of O(t) = O(log2(κ/ε)) following Section 2.2. The QFT can be efficiently implemented and
its runtime shall be omitted here. The conditional Hamiltonian simulation adds the runtime

Õ
(
log2(N)κs4/ε

)
(3.3.111)

following Section 2.7. We may note, that ‖H‖ = 1 by assumption, as we can directly calculate via the
definition of the operator norm, see Theorem 2.12, that the bound on the maximal eigenvalue also bounds
the operator norm this way. We omit the runtime for the qutrit rotation for generating the auxiliary
qutrit in the same manner as the QFT. The last factor involved is AA, as in Algorithm 1. For that, we
consider first the following theorem on the success probability.

Theorem 3.31. We have

0 < p̃ =

N∑
j=1

T−1∑
k=0

|βjαj,k|2f̃2k ∈ Ω(1/κ2) (3.3.112)

Proof. As proven in Theorem 3.19, for each j, there is are approximations kj ∈ [0, T−1]N with |λj−λ̃kj | <
1
4κ . So p̃ 6= 0. Due to λ̃kj ∈

(
3
4κ , 1 +

1
4κ

)
and the strict monotonicity of f in both

(
3
4κ , 1

]
and

[
1, 1 + 1

4κ

)
,

46

we thus have

f̃2kj
> min

({
1

4
sin2

(
π

2

(
2
3

4κ
− 1

))
,

1

4κ2
(
1 + 1

4κ

)2
})

= min

({
1

4
cos2

(
3π

4κ

)
,

1

4κ2
(
1 + 1

4κ

)2
})

(3.3.113)

≥ min

({
1

8
,

1

(25/4)κ2

})
∈ Ω(1/κ2) (3.3.114)

To bound the associated |αj,k|2 values, we consider Theorem 3.9, which states∑
k∈[0,T−1]N
|δj,k|<2π

|αj,k|2 > 0.3 (3.3.115)

This gives

p̃ >

N∑
j=1

|βj |2
∑

k∈[0,T−1]N
|δj,k|<2π

|αj,k|2f̃2k ∈ Ω

(
1

κ2

)
(3.3.116)

which is the statement. ■

So the resulting runtime is

Õ(κ(TB + 2 log2(κ/ε) + log2(N)κs4/ε)) (3.3.117)

Let us summarize the result in one theorem.

Theorem 3.32 (HHL Algorithm). Let N := 2n, n ∈ N≥1. Given a well-conditioned matrix A ∈ CN×N ,
an efficiently initializable state |b〉 ∈ CN with initialization complexity term TB, |x〉 := 1

∥A−1|b⟩∥A
−1 |b〉

and an error cap of ε ∈ (0, 100/(4π)), there is a quantum algorithm for obtaining a quantum state
|x̃〉 ∈ CN with ‖|x̃〉 − |x〉‖ < ε in time

Õ(κ(TB + 2 log2(κ/ε) + log2(N)κs4/ε)) (3.3.118)

3.4 Relaxations to the Assumptions and Discussion

Relaxations We deduce possible relaxations to the multitude of assumptions presented in Section 3.1.
Let A ∈ Cm×n be an arbitrary matrix and b ∈ Cm be a vector, where m,n ∈ N≥1. Consider the SLE
Ax = b, where x ∈ Cn is unknown.

1. If b = 0, then x = 0 is a solution. If A = 0, then if b 6= 0, there is no solution. Furthermore, if
‖b‖ 6= 1, then solving after Ax = b

∥b∥ gives the solution by ‖b‖x. So we may now assume ‖b‖ = 1,
A 6= 0 and write |b〉.

2. If m 6= n and m is not a power of two, appending zero columns and rows to A and adding zero
entries to |b〉 gives a sufficient form of the equation system. In the next point, we describe a
reduction, which suffices for introducing Hermiticity to create a system of form (m+n)× (m+n),
so the number of rows and columns for A and zero entries for |b〉 we need to add is given by
1 ≤ 2⌈log2(m+n)⌉ − (m + n) ≤ 2⌈log2(m+n)⌉−1 − 1, which is polynomial. This modification further
violates the invertibility requirement.

3. |b〉 must be efficiently initializable. There is no clear reduction strategy for this, except possibly
preconditioning [3, p. 4], which we will also mention in connection with the sparsity.

4. We first consider the Hermiticity requirement, before the invertibility. Hermiticity is needed to
approximate the eigenvalues using an element of 2πZ

t0
each. We may skip the following reduction,

if the imaginary parts of the eigenvalues are very small, and the system is already quadratic. The
latter point is needed for the second previous reduction, but can also be performed by appending

47

additional rows or columns to the matrix and entries to the vector. In general, we can obtain a
Hermitian matrix from A by performing the following reduction from [3, p. 11-12] to a system of
form (

0 A
A† 0

)(
0
x

)
=

(
|b〉
0

)
(3.4.1)

We verify the Hermiticity by (
0 A
A† 0

)†

=

(
0 A∗

At 0

)t

=

(
0 A
A† 0

)
(3.4.2)

The space complexity of this reduction is given by the 3mn additional entries to create the new
matrix, but also by the n zero entries, which are added to |b〉.

We can further make statements about the eigenvalues and eigenstates of this matrix with the
singular numbers and singular vectors of A. Denote the matrix appearing in the reduction SLE as
H := |0〉 〈1| ⊗A+ |1〉 〈0| ⊗A† and let the outer form of the SVD of A as in Theorem 1.13 be given
by

A =

r∑
j=1

σj |uj〉 〈vj | and thus A† =

r∑
j=1

σj |vj〉 〈uj | (3.4.3)

with r := rk(A) > 0, as A 6= 0. We claim, that H has the 2r eigenvalues {±σj | j ∈ [1, r]N} and 2r
eigenvectors {

∣∣w±
j

〉
:= (1/

√
2)(|0〉 |uj〉± |1〉 |vj〉) | j ∈ [1, r]N}, which we can verify by direct matrix

multiplication. Consider |0〉 |b〉, as in the reduction SLE, and express it via its projection
r∑

j=1

〈|0〉 |b〉||0〉 |uj〉〉 |0〉 |uj〉 =
r∑

j=1

〈b|uj〉 |0〉 |uj〉 =:
r∑

j=1

βj |0〉 |uj〉 =
r∑

j=1

βj
1√
2
(
∣∣w+

j

〉
+
∣∣w−

j

〉
)

(3.4.4)

using Lemma 3.27 and normalize it. Considerations regarding the fact, that we apply the algorithm
on a projection of |0〉 |b〉, are made in the next point. Running the HHL algorithm gives an
approximation of the state

r∑
j=1

βj
σj

1√
2
(
∣∣w+

j

〉
−
∣∣w−

j

〉
) (3.4.5)

under normalization.

5. If A is not invertible, then first need to reconsider the initial problem statement. If we have
|b〉 /∈ Im(A), there is no target state to approximate, but if (λ1, |v1〉), ..., (λN , |vN 〉) again denotes
the eigenvalue-eigenstate pairs of an eigenbasis of A, then can define PIm :=

∑
λj ̸=0 |vj〉 〈vj | and

Pker :=
∑

λj=0 |vj〉 〈vj | to be the image and kernel projectors of A. The HHL algorithm then
seemingly approximates the solution to the SLE problem

A |x〉 = 1

‖PIm |b〉‖
PIm |b〉 (3.4.6)

if PIm |b〉 6= 0. But this is also not the case in general. Defining Pw :=
∑

λj∈[1κ ,1] |vj〉 〈vj | and
Pb :=

∑
λj /∈[1κ ,1] |vj〉 〈vj | to be the projectors into the well-conditioned subspace and bad-conditioned

subspace

span

({
|vj〉

∣∣∣∣ j ∈ [1, N]N, λj ∈
[
1

κ
, 1

]})
and span

({
|vj〉

∣∣∣∣ j ∈ [1, N]N, λj /∈
[
1

κ
, 1

]})
(3.4.7)

48

and especially besides the contributions of the projection of |b〉 onto the subspace

span

({
|vj〉

∣∣∣∣ j ∈ [1, N]N, λj ∈
(

1

2κ
,
1

κ

)
∪ (1,∞)

})
(3.4.8)

due to the actions of the filter functions in (1/(2κ), 1/κ) and afterwards, the HHL algorithm solves
the SLE

A |x〉 = 1

‖Pw |b〉‖
Pw |b〉 (3.4.9)

if Pw |b〉 6= 0. The filter functions still perform ”true” inversion in the space spanned by the
eigenstates associated with eigenvalues in (1,∞), but when these values become very large, their
contributions also vanish.

Besides that, there is no division by zero inside of the algorithm, if there are eigenvalues of value
zero, but the solution to the SLE may be wrong to an unacceptable degree due to the filter functions
possibly filtering out most of the contribution by Pb |b〉. One further issue, which follows from this
problem, is, that if 〈b|vj〉 = 0 for all j ∈ [1, N]N with λj ∈

(
1
2κ ,∞

)
, the algorithm does not

terminate in general, as the amplitude amplification does not terminate, see Algorithm 1. The
success probability of measuring a 1 must be greater than zero, as required in our analysis of the
complexity.

In summary, there is no clear general strategy for generally solving this issue, and for the application
of the algorithm to succeed these projections must be taken into consideration, although we also
discuss strategies for scaling the eigenvalues for enlargening the well-conditioned subspace. As
Harrow et al. may have implied it [3, p. 7], a person working with the algorithm may in general
want to weigh the contribution of the well-conditioned and bad-conditioned subspaces first.

6. The requirement for positive-semidefiniteness mainly affects the phase estimation analysis in Sec-
tion 3.3, but also the analysis of the filter functions for the overall error. As we aim to approximate
λjt0 for any fixed j ∈ [1, N]N and t0 > 0, the algorithm must allow k < 0. We can do that by
increasing the clock register size by 1, so t← t+ 1 in the following, and additionally applying the
conditioned phase transformation

N : CT → CT , |τ〉 7→ ei
τ
T ·2π(T

2 −1) |τ〉 (3.4.10)

on the clock register before the application of QFT† in Algorithm 2. This map is unitary and
efficiently implementable, as considering the binary representation τ = τt−1...τ0 =

∑t−1
i=0 τi2

i of an
index τ ∈ [0, T − 1]N gives

N =

t−1⊗
i=0

(
e

0
T ·2π(T

2 −1) 0

0 e
2(t−1)−i

T ·2π(T
2 −1)

)
(3.4.11)

The state after the phase estimation using this phase transformation is thus
√
2

T

N∑
j=1

βj

T−1∑
k=0

(
T−1∑
τ=0

sin

(
π(τ + 1

2)

T

)
e

iτ
T (λjt0−2π(k−(T

2 −1)))

)
|k〉 |vj〉 |0〉 (3.4.12)

This gives

k −
(
T

2
− 1

)
∈
[
−
(
T

2
− 1

)
,
T

2

]
(3.4.13)

Modifying the algorithm in this way does not change any of the results from the phase estimation
analysis, but it allows the existence of a k with |δj,k| < 2π for any j. These approximations should

49

then be denoted by λ̃k := 2π
t0
(k− (T/2− 1)). We uncompute the registers analogously. We further

need to mirror the filter functions at y = 0 to allow for negative approximations, similarly to Childs
et al. [40, p. 5]. The statements of the Lipschitz-continuity of |h(·)〉 in Section 3 and the proof
of the special Lipschitz-type condition in Lemma 3.26 do not change either, because for the first
we only considered the derivatives and for the second, we mirrored the filter functions. And, since
Theorem 3.29 and the complexity analysis are also not affected, this reduction solves the problem.

7. Here we have no clear reduction of the sparsity of A. Possible techniques may include performing
basis switches or simply considering simulation techniques for different Hamiltonians7 following [3,
p. 6] or even allowing the use of a preconditioner [3, p. 4], which would make the problem more
suitable for the HHL algorithm.

8. Efficient row-computability is essential to the Hamiltonian simulation time. We refer to the last
point.

9. For 1
κ ≤ λj ≤ 1 for all j ∈ [1, N]N, we first consider in the positive-semidefinite case, that the

contribution of the space spanned by the eigenstates with eigenvalue λj > 1 vanishes with larger
λj in the inversion by the filter function f . If we still need this requirement, for instance since many
eigenvalue contributions come from eigenvalues in (0, 1/(2κ)], then we may consider calculating the
maximal condition number λmax ∈ R>0 and then by A 1

λmax
x = |b〉, we have indeed this requirement

for the eigenvalues in this SLE. This is due to our ability to scale the Hamiltonian, which in return
scales the eigenvalues due to (µA) |vj〉 = (µλj) |vj〉 for any µ ∈ R, j ∈ [1, N]N. We recover the
solution vector for the original system by multiplying with λmax. When using an upper bound,
we must consider, if our approximation or upper bound for κ does not cut off eigenvalues, which
become very small by dividing by λmax. For λmin = 1 or λmin ≈ 1, it would also suffice to use κ
as this maximum eigenvalue bound. If we have only negative eigenvalues, we can multiply A with
−1 and in case of having both positive and negative eigenvalues, we cannot additively shift the
eigenvalues, so the only clear reduction strategy would be to weigh both subspaces and multiply by
−1, iff the subspace spanned by the eigenstates of the negative eigenvalues has a larger contribution
for the accuracy of the solution.

10. We may omit the requirement for having the exact value of κ by providing an upper bound on
it, similarly to Childs et al. [40, p. 3]. This affects mainly the filter functions and the algorithm
runtime. How such an upper bound can be obtained is generally unclear, but we have seen one
instance, where one can do that, when we discussed the example of the condition number of Hilbert
matrices, see Example 1.26. Another strategy involves increasing κ exponentially by 1, 2, 4, ..., as
[3, p. 6] suggest. For that, we would still need to have a success probability of the measurement,
which is not equal to zero, as otherwise AA does not terminate.

Discussion and Outlook Our description of the original HHL algorithm is finished. We want to now
discuss some chosen aspects.

We first want to give some remarks regarding the original HHL paper and why we needed some more
technical lemmas in this thesis. First, the initialization of the clock state is not further elaborated, only
a small mention of it is made in [3, p. 2]. As a sidenote, we may consider it to be interesting, that we
can obtain the formula for the antiderivative using the formula by Brassard et al.. The calculation of the
alternative representation of the αj,k values in Lemma 3.12 contains mistakes, due to which the result is off
by −1/2. The phase estimation analysis presented [3, pp. 10-11] concludes with a bound of |αj,k| ≤ 8π

δ2j,k
,

using the lower bound in Lemma 3.11, but it is not applicable, as, see our argument immediately after
Observation 3.10, the assumption |δj,k| ≤ T/10 is generally wrong and thus the arguments of the sine
functions can be in [3.5π/4, π], which supersedes the root

√
6 of the lower bounding polynomial x−x3/6,

which leads to both terms of the product sin
(

δj,k+π
2T

)
sin
(

δj,k−π
2T

)
in the denominator becoming negative.

Furthermore, in [3, p. 6], a description of the actual implementation of qutrit rotation is missing.

7In this sense, we can consider the Hamiltonian simulation as replaceable.

50

The choice of initial coefficients for the clock register is seemingly arbitrary. Harrow et al. reason, that
it suites the error analysis well [3, p. 2], which it does, but the optimality has not been shown. From our
research, it appears, that this aspect of the algorithm has not been further studied. Some authors instead
suggest in their diagrams, that we can initialize the register by applying the Hadamard transformation.
Examples of this constitute [12, p. 30], [41, p. 351] and [42, p. 5]. It would seem, that most experimental
setups prefer this initialization procedure, although it does not conform to the original description and
especially does not fulfill the requirements for the guaranteed bounds from the error analysis.

Some experimental implementations of the algorithm further fix the evolution time to 2π, see [43, p. 4-5]
for a demonstration. This parameter can, in most cases, be chosen in a better way, as we argue in the
next example. In the example of Cao et al., they also do not initialize using the clock register using the
proposed coefficients, and they do not use the filter functions. Although in this case, this could be due
to the example being of pure demonstrational nature. In general, the choices of t and t0 do not need to
be fixed, especially, if we possibly consider a nyche case.
Example 3.33. Suppose all eigenvalues are in N≥1. Then we can choose t at least large enough, s.t.
T − 1 ≥ max{λ1, ..., λN} and t0 := 1. In this case, the eigenvalue estimation is near perfect for all
eigenvalues. Suppose λj = k, then δj,k = 0 and, by Lemma 3.12, we have

|αj,k| =
√
2

T

1

sin
(

π
2T

) > √2
T

2T

π
=

2
√
2

π
> 0.9003 (3.4.14)

under the use of Lemma 3.11.

To improve numerical stability, specific filter functions were chosen. The authors state, that the choice of
f and g is arbitrary [3, p. 6]. This aspect could be studied further to find out, if the numerical precision
can be improved by choosing different functions. We also argue, that a straight cut-off at the boundary
1
κ would suffice for most needs. A dive into the referred literature at [3, p. 6] may also help improve the
general understanding regarding this point.

We want to again consider the initial problem statement for the HHL algorithm. The goal was to solve
an SLE. After we have seen the actual operations of the HHL algorithm, it is valid to ask what exact
answer the HHL algorithm is approximating. In our discussion of possible relaxation techniques for the
invertibility of A, see 5., we observed, that the result of the algorithm is an inversion of the projection
of the given vector into the so-called well-conditioned subspace of eigenstates of A. The result of the
algorithm is thus not always the actual solution to the SLE itself. We know, that in general, there
may be no solutions, exactly one or several more, neither case can always be determined using the HHL
algorithm. In some cases, as in Chen and Gaos algorithm for obtaining solutions of polynomial equation
systems, which we present in Section 4.4, one can decide the solvability by studying a special case and
more techniques.

Furthermore, the result of the HHL algorithm is a quantum state, not a classical vector. The no-cloning-
theorem [19, pp. 81-84], in practice, thus makes the duplication of the result state impossible. Obtaining
the entries of a quantum state is in general not a trivial task, although there have been suggestions
for such methods [28, pp. 14-25]. HHL can thus only be used as a subroutine in a larger quantum or
hybrid quantum algorithm, which makes its applicability in some fields, such as machine learning or
cryptography, difficult.

We believe, that the given runtime for the Hamiltonian simulation in [3, p. 6] is off by a factor of O(s2).
We have detailled our calculation for the runtime of the method used in Section 2.7, while in the original
HHL paper, there is no mention of where to find or derive the claimed runtime. The researchers Childs
et al., who are actively involved in the research of Hamiltonian simulation, as for instance [40, 44] show,
have further supported this claim in [44, p. 2]. If this finding is true, then the runtime of the HHL
algorithm is as analyzed approximately Õ(log2(N)κ2s4/ε) and not Õ(log2(N)κ2s2/ε), which could have
far reaching consequences regarding the research applying the HHL algorithm, of which we mention some
recent results in the next paragraph.

51

In the next subsection, we will discuss two improvements of the algorithm by Ambainis and Childs et
al.. To add to this, we have in general found, that since the release of the paper, the algorithm has
been extended and applied by multiple authors, as Harrow et al. themselves have observed [3, pp. 4-
5]. For instance by using it to solve non-linear differential equations [45], as such problems can often
be reduced to linear systems [8]. [46] presents four more improvements in its introduction and the
Variational Quantum Linear Solver (VQLS), an algorithm, that combines a minimization problem for
a cost function on a classical computer with a quantum algorithm for solving SLEs. Hybrid quantum-
classical algorithms have been developed and tested, one such test constitutes [42], thus giving a different
class of quantum SLE solvers than HHL-inspired ones.

3.5 Outline of Two Improvements

We want to briefly mention two improved algorithms based on the ideas of HHL.

Variable Time Amplitude Amplification

Ambainis suggested a model of gate quantum computation, in which a quantum algorithm could ”halt”
at different times, and derived another algorithm for solving linear systems of equations based on HHL
[47]. We will explain the model briefly and then summarize the result.

Branched Quantum Computations The model of VTAA [47, pp. 5-8] is based on a state space
of form H := C3 ⊗Ho, where Ho is a Hilbert space. The system, or our register, shall be in the states
|ψ1〉 , ..., |ψm〉 ∈ H at times t1, ..., tm ∈ R≥0. Every ti, i ∈ [1,m]N, the system may stop, meaning that we
stop the algorithm with a given probability pi ∈ [0, 1]. We require

1. that there are subspaces Hi of Ho forming an ascending chain H1 ⊆ H2 ⊆ ... ⊆ Hm = Ho.

2. that we can express |ψi〉 for an i ∈ [1,m]N as

|ψi〉 = αi,0 |0〉 ⊗ |ψi,0〉+ αi,1 |1〉 ⊗ |ψi,1〉+ αi,2 |2〉 ⊗ |ψi,2〉 (3.5.1)

where αi,0, αi,1, αi,2 ∈ C are scalars and |ψi,0〉 , |ψi,1〉 ∈ Hi, as well as |ψi,2〉 ∈ Ho ∩ H⊥
i may not

necessarily be valid quantum states. We further have |ψm,2〉 = 0.

3. Let i ∈ [1,m− 1]N be fixed. Denote by PHi the projector into Hi. Then

|ψ − i, 0〉 = PHi
|ψi+1,0〉 ∧ |ψ − i, 1〉 = PHi

|ψi+1,1〉 (3.5.2)

We may interpret this model the following way: During computation, parts of our state switch the
Hilbert space, in which the main calculation is currently performed. By doing that, we are enabling
the possibility of dovetailing, i.e. interweaving multiple computations. The interpretation of the states
comes from requirement 2: Similar to the HHL algorithm, |ψi,1〉 decodes the ”good” part of the state
and |ψi,0〉 , |ψi,2〉 decode the bad parts of the state. The desired results of the computation itself are thus
contained inside of Hi at time ti respectively.
The times t1, ..., tm and probabilities p1, ..., pm were let lose by us and are up to the algorithm designer
to choose. As Ambainis, one may define the average stopping time by

Ta :=

√√√√ m∑
i=1

pit2i (3.5.3)

and set the maximum time TM := tm and the success probability at time point tm to be ps := |αm,1|2.
Ambainis then proves the following theorem.

Theorem 3.34. There is a quantum algorithm, which amplifies the success probability of an algorithm
in the VTAA model to give a successful measurement in time

O
(
TM log0.5(TM) +

Ta
ps

log1.5(TM)

)
(3.5.4)

52

ti |ψi,0〉
PHi |ψi+1,0〉 = |ψi,0〉
PH⊥

i
|ψi+1,0〉|ψi,1〉

PHi |ψi+1,1〉 = |ψi,1〉
PH⊥

i
|ψi+1,1〉|ψi,2〉

|ψi+1,2〉

ti+1

Figure 14: Illustation of the difference between the three components of two different consecutive states
in a VTAA algorithm, where i ∈ [1,m]N is fixed. The branches in the arrows indicate sums, i.e. e.g.
|ψi,0〉 = PHi |ψi,0〉+ PH⊥

i
|ψi,0〉 .

The main result by Ambainis is now, that by expressing the HHL algorithm inside of the VTAA model,
we can improve the success probability from O(κ2) wrt. the runtime factor of κ. There we had O(κ2)
as the dependence, which was obtained by choosing the evolution time in dependence of O(κ) and then
running AA for another dependence on O(κ). Ambainis acquires the following result [47, pp. 8-12].

Theorem 3.35. Using VTAA, there is a quantum algorithm, which improves the runtime of the HHL
algorithm to

Õ
(
log2(N)κ log32

(κ
ε

)
s2 log22

(
1

ε

)
1

ε3

)
(3.5.5)

The runtime cited comes from the fact, that the phase estimation procedure of runtime O(log2(N)κs2/ε)
is used as a subprocedure of the algorithm [47, p. 9], but Ambainis omits the O(log2(N)s2) factor in [47,
p. 12]. Note, that we cited the runtime factor O(s2) to conform with these papers, although it should
be O(s4).
Remark 3.36. We may note, that while the dependence on κ is better than the original HHL algorithm,
the error dependence is significantly worse.

Fourier Decompositions for Sublinear Error Dependence

In a 2015 paper, Childs et al. presented three approaches [40] to substantially improving the error
dependence of the HHL algorithm. We shortly describe the so-called Fourier approach, which we shall
divide into the explanation of three conceptual steps.

• First, the results include the use of newer techniques for the Hamiltonian simulation, as presented
by Childs et al. in [30].

• Secondly, one important aspect of the paper is the use of LCUs as in [40, pp. 5-8]. Let A ∈
CN×N , N := 2n, n ∈ N≥1 be the matrix of the SLE. Assume further it is, possibly after a reduction,
Hermitian and assume for the sake of the conceptual overview, that it is invertible. The idea is then
to, similiarly to the Hamiltonian decomposition in Section 2.7, decompose the matrix A−1 into a
unitary sum and to simulate the sum. The unitaries chosen are indeed eiAtj , where tj ∈ R are times,
giving a decomposition of form A−1 =

∑
j αje

iAtj with coefficients αj ∈ C. By performing a basis
switch, the authors then reduce the problem of approximating this decomposition to approximating
a real univariate decomposition x−1 =

∑
j αje

ixtj for x ∈ [−1,−1/κ] ∪ [1/κ, 1].

• Thirdly, to compute the aforementioned decomposition of 1/x, the following Fourier transformation
is used:

1

x
=

i√
2π

∫ ∞

0

∫ ∞

−∞
ze−z2/2e−ixyz dz dy (3.5.6)

As in [40, pp. 10-11]. It is shown how to discretize these integrals, giving a suitable quantum
algorithm for approximating A−1.

53

We recognize again the pattern of using an efficient decomposition of the initial linear operator for solving
the SLE problem. Childs et al. then have as one of their results the following theorem as in [40, p. 4].

Theorem 3.37 (Fourier Approach to HHL). Using more recent results for Hamiltonian simulation,
techniques involving LCUs and Fourier transformations, there is a quantum algorithm for solving an
SLE in time

O
(
sκ2 log2.52

(κ
ε

)(
log2(N) + log2.52

(κ
ε

)))
(3.5.7)

The other two approaches include the use of Chebyshev polynomials and the modification of Ambainis’
VTAA HHL algorithm. The three approaches are not equivalent, as pointed out in [40, p. 4] and have
their own advantages and disadvantages, which we shall not elaborate, as this is a high level overview of
the results.

54

4 Application on the Cryptanalysis of AES

The AES, synonymously Rijndael, is a famous, widely used block cipher. It is specified by the US-
American NIST in [48]. AES is a symmetric cipher, meaning that it uses one key for the encryption and
decryption of blocks. The key is K bits long, where K ∈ {128, 192, 256}. Thus, it is clear that for a
brute force approach to key retrieval with Grovers algorithm, one can achieve a quadratic improvement
from a runtime of O(2K) to O(2K/2).
Rijndael and AES are two different cipher specifications. As described by the original authors of both
ciphers [49, p. 31], the difference lies in the allowed values of the input block length and the cipher key
length. We will focus on AES, as it is the cipher of our cryptanalytical interest.
The goal of this last subsection is twofold. For one, we want to discuss the inner workings of Rijndael
and its formulation as a so-called BES-cipher. Especially, we want to form a system of equations for key
recovery using that, which we will however not solve, as this is not the scope of this thesis. Secondly, we
will discuss current research on this topic in the context of two recent papers by the researchers Chen and
Gao [4] and Ding et al. [5]. We chose BES, as it overcomes a small algebraic problem when attempting
to formulate such an equation system with a comparatively simple solution. We furthermore analyze the
size of the system.
AES has proven to be a reliable cipher over the years, resisting any attempt at successful cryptanalysis
yet, as a survey by Nover shows [50]. The authors of Rijndael, Joan Daemen and Vincent Rijmen,
released a book on the details and the design philosophy of Rijndael [49], as referenced above. It shall
be our main source for the next subsection, next to the FIPS cipher specification.

4.1 An Algebraic Description of AES

An overview of AES is given in Figure 15. Table 1 lists the relevant parameters. We shall use the
symbol K for the key itself. One difficulty in this description is differentiating between the different
representations of bytes: A byte can be seen as a vector from the vector space GF(2)8, an integer from the
finite modulo ring F28 or as a polynomial from the field GF(2)[x]/(p), where p ∈ GF(2)[x] is an irreducible
polynomial, see Corollary 1.31. We shall explicitely state the form we use each time. We always index
starting from the least significant bit, so for instance we may have b = b7b6b5b4b3b2b1b0 = 01110010,
which corresponds to (0, 1, 0, 0, 1, 1, 1, 0)t, 114 or x6 + x5 + x4 + x.
The input of the algorithm is both a 32Nb-bit plaintext P ∈ F4×Nb

28 and a 32Nk-bit key K ∈ F4×Nk

28 . The
output is a 32Nb-bit long encrypted block C ∈ F4×Nb

28 . We will describe each step of the AES in detail
and algebraically. We also do not fix Nb, Nr or Nk, as it is not necessary for our discussion.
One major design criterion of AES was space-efficiency [49, pp. 4-5], thus, we do not require a lot of
storage. We work with a null-indexed column-major enumeration of the input plaintext bytes along a
4×Nb grid following [48, p. 9]. Let the plaintext be the initial state S := (s(i−1)(j−1))i,j∈4×Nb

∈ F4×Nb

28

of the current encryption or decryption. The plaintext indices start at the first byte, independent of
endianness. In other words, S = P and, since P = (p0, ..., p4Nb−1) ∈ F4Nb

28
∼= F4×Nb

28 , we can write for
both P and K analogously

P = S =


p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

 K =


k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

 (4.1.1)

for the initial state [49, p. 33], here for the case Nb = Nk = 4.

Parameter Meaning AES-128, AES-192, AES-256
Nb Block length in 32-bit words. 4, 4, 4
K Length of cipher key in bits. 128, 192, 256
Nk Key length in 32-bit words. 4, 6, 8
Nr Round count. 10, 12, 14

Table 1: AES Parameters, according to [48, pp. 13-14].

55

x

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

y

Nr − 1 times

k

KeySchedule

KeySchedule

KeySchedule

x

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

InvMixColumns

InvShiftRows

InvSubBytes

AddRoundKey

y

Nr − 1 times

KeySchedule

KeySchedule

KeySchedule

k

Figure 15: AES encryption and decryption block diagram. The inverse versions of the encryption
functions are defined in analogy to them, and will not be of concern to us.

(i) SubBytes [49, pp. 34-37]: Each byte in the state is interpeted as an element of the field F :=
GF(2)[x]/(x8 + x4 + x3 + x+1). First, consider the so-called patched inverse bijection ι, as well as
the matrix LA ∈ GF(2)8×8 and vector vA ∈ GF(2)8:

ι : F
∼=→ F, a 7→

{
0 a = 0

a−1 a 6= 0
LA :=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


vA :=



1
1
0
0
0
1
1
0


(4.1.2)

The SubBytes step performs the map

ρ : F → F, a 7→ LAι(a) + vA (4.1.3)

for each byte s in S. This part of the description already poses a problem for the cryptanalysis of
the cipher, as we switched from F to GF(2)8 for the application of the affine transformation. ρ is
also called the Rijndael S-Box. We may also note, that the byte is interpreted as a column vector
with the top entry being the LSB. LA is further invertible, as det(LA) = 5, which we may check in
a long calculation via the recursive development of the determinant.

(ii) ShiftRows [49, pp. 37-38]: Use the following map:
s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33

 7→

s00 s01 s02 s03
s11 s12 s13 s10
s22 s23 s20 s21
s33 s30 s31 s32

 (4.1.4)

56

We can also express this operation via a permutation matrix MA ∈ F 4Nb×4Nb . The above instruc-
tion is then equivalent to taking a row-major enumeration of S and performing

S 7→ SAS (4.1.5)

where we denote with the notation of a permutation, i.e. each entry shows the index of the 1-entry
in the column

SA := (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11) (4.1.6)

(iii) MixColumns [49, pp. 39-41]: The i ∈ [0, Nb − 1]Nth column vector (sij)j∈[0,3]N of S is treated as a
vector from F ′ := F28 [x]/(x

4+1) and multiplied with 3x3+x2+x+2. This is equivalent to taking
a column-major enumeration of S and applying the diagonal matrix MA := diag(CA, CA, CA, CA),
where

CA :=


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (4.1.7)

following Example 1.32. Note, that the first byte in a column thus corresponds to the coefficient
x3 in each polynomial, and so on.

(iv) AddRoundKey [49, p. 41]: During the i ∈ [0, Nr]Nth round, add the current round key, so S 7→ S+K̃i.
See (v).

(v) KeySchedule [49, pp. 43-46]: The algorithm initially creates Nr + 1 additional keys K̃0, ..., K̃Nr ∈
F4×Nb

28 for the AddRoundKey step. This procedure is called KeyExpansion. Let W := F4×Nb(Nr+1)
28

be a matrix of Nb(Nr +1) 32-bit words. Four columns each correspond to a round key. We further
define so-called round constants ri+1 := xi ∈ F , i ∈ N. All additions are performed in GF(2)8, so
by a component-wise exclusive-or operation.
There are versions of the KeyExpansion forNk ≤ 6 andNk > 6. For AES, these versions correspond
to the cases Nk ∈ {4, 6} and Nk = 8. If Nk ≤ 6, then the matrix W is constructed column by
column according to the following rules, in this order of precedence:

wij := kij i ∈ [0, 3]N, j ∈ [0, Nk − 1]N
w0j := w0(j−Nk) + ρ(w1(j−1)) + rj/Nk

j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 0 mod Nk

wij := wi(j−Nk) + ρ(w((i+1) mod 4)(j−1)) i ∈ [1, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 0 mod Nk

wij := wi(j−Nk) + wi(j−1) i ∈ [0, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j 6= 0 mod Nk

(4.1.8)

If Nk > 6, then the matrix W is constructed in a similar way, that is according to:

wij := kij i ∈ [0, 3]N, j ∈ [0, Nk − 1]N
w0j := w0(j−Nk) + ρ(w1(j−1)) + rj/Nk

j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 0 mod Nk

wij := wi(j−Nk) + ρ(w((i+1) mod 4)(j−1)) i ∈ [1, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 0 mod Nk

wij := wi(j−Nk) + ρ(wi(j−1)) i ∈ [0, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 4 mod Nk

wij := wi(j−Nk) + wi(j−1) i ∈ [0, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j 6= 0 mod Nk

(4.1.9)

After W is obtained, we derive the keys by W =
(
K̃0 K̃1 ... K̃Nr

)
.

The output of the algorithm is stored in S. We may also note, that all steps described are invertible,
allowing decryption.

57

4.2 The BES Cipher

The cryptanalysis of AES in form of the above algebraic description is complicated, as we have to switch
between the field F and the vector space GF(2)8. The Big Encryption System (BES) cipher by Murphy
and Robshaw [51] defines a family of ciphers similar structure, and simplifies the cryptanalysis by only
using operations in F . We shall describe the BES for every version of AES and without the so-called
modified key schedule [51, p. 3].8

We define the map

φ : F → F 8 (4.2.1)

b 7→
(
b(2

0), b(2
1), ..., b(2

7)
)

(4.2.2)

For any n ∈ N≥1, φ is extended component-wise, giving

φn : F
n → F 8n (4.2.3)
b 7→ (φ(b1), φ(b2), ..., φ(bn)) (4.2.4)

Analogously, we define the matrix operation φm×n, m ∈ N≥1, via φmn. We further let

ι(φ(a)) := φ(ι(a)) (4.2.5)

with ι being the patched inverse, as described in the AES SubBytes operation, see (i) in the previous
subsection. The component-wise application of ι gives the analogous definitions for the general functions
φn and φm×n.

Theorem 4.1 (Properties of φ). φ is injective and additive. Both properties carry over to φn. 9

Proof. The injectivity can be read off by observing the behavior on the first component. For the additivity
we calculate in GF(2)[X] and k ∈ [0, 7]N using the binomial development:

(a+ b)(2
k) =

2k∑
l=0

(
2k

l

)
alb2

k−l = a(2
k) + b(2

k) (4.2.6)

Note that the terms for 1 ≤ l ≤ 2k− 1 vanish as the binomial factors are natural numbers and especially
divisible by 2. We slightly abuse the notation here, but the point is, that the terms in the middle of the
sum are evenly often added together, which leads to the polynomial powers vanishing. ■

As mentioned, the main result by Murphy and Robshaw is, that we can represent the AES algorithm by
only using operations in F . It is not yet clear, why φ could help our cause. In the same manner as in
Section 4.1, we shall describe all five operations in the language of BES. For that, we first map the input
plaintext-key pair (P,K) via φ into the BES-associated vector spaces. So now, denote P ∈

(
F 8
)4×Nb ,

K ∈
(
F 8
)4×Nk and for the state S ∈

(
F 8
)4×Nb . Also C ∈

(
F 8
)4×Nb , as we will see.

(i’) SubBytes [51, pp. 5-8]: The patched inverse ι can be applied component-wise for each entry sij in
S. In the original AES, we applied the operator LA : GF(2)8 → GF(2)8 after ι and then added vA.
This is an operation in GF(2)8, not F , and it is not clear, how we could represent this operation
with a linear transformation. Define

ψ : F → GF(2)8,

7∑
k=0

bkx
k 7→

b0...
b7

 (4.2.7)

8As a sidenote, that the authors of AES proposed a similar method as described here under the name of AES-GF, see
[49, pp. 192-194].

9Field theorists may be reminded of the Frobenius homomorphism [17, p. 337]. The additivity there, the Frobenius rule,
is also called the freshmans dream. The proof idea for the additivity is the same.

58

to be the bijective natural embedding of F into GF(2)8. Then, we form the map f := ψ−1 ◦ LA ◦
ψ. For the following derivation, we want a polynomial, which interpolates f . The Lagrangian
interpolation method [17, p. 193] gives

f(x) =
∑
b∈F

f(b)
∏

c∈F\{b}

x− c
b− c

=

7∑
k=0

λkx
(2k) (4.2.8)

with (λi)i∈[0,7]N := (05, 09, f9, 25, f4, 01, b5, 8f) in hexadecimal notation following [51, p. 7], where
we do not verify this result here, as this would require a large computation using a computer, for
which we know the needed multiplication techniques. LA is invertible and thus f . Interpret the
hexadecimal notation here digit-wise, so e.g. f9 = 11111001.
Similarly to φ, f is additive. For the matrix representing the action of the linear map LA, we may
choose

L̂B :=

(
λ
(2i−1)
j−1

)
i,j∈8×8

=



λ
(20)
0 λ

(20)
1 λ

(20)
2 λ

(20)
3 λ

(20)
4 λ

(20)
5 λ

(20)
6 λ

(20)
7

λ
(21)
7 λ

(21)
0 λ

(21)
1 λ

(21)
2 λ

(21)
3 λ

(21)
4 λ

(21)
5 λ

(21)
6

λ
(22)
6 λ

(22)
7 λ

(22)
0 λ

(22)
1 λ

(22)
2 λ

(22)
3 λ

(22)
4 λ

(22)
5

λ
(23)
5 λ

(23)
6 λ

(23)
7 λ

(23)
0 λ

(23)
1 λ

(23)
2 λ

(23)
3 λ

(23)
4

λ
(24)
4 λ

(24)
5 λ

(24)
6 λ

(24)
7 λ

(24)
0 λ

(24)
1 λ

(24)
2 λ

(24)
3

λ
(25)
3 λ

(25)
4 λ

(25)
5 λ

(25)
6 λ

(25)
7 λ

(25)
0 λ

(25)
1 λ

(25)
2

λ
(26)
2 λ

(26)
3 λ

(26)
4 λ

(26)
5 λ

(26)
6 λ

(26)
7 λ

(26)
0 λ

(26)
1

λ
(27)
1 λ

(27)
2 λ

(27)
3 λ

(27)
4 λ

(27)
5 λ

(27)
6 λ

(27)
7 λ

(27)
0


(4.2.9)

The seemingly arbitrary choices for the bottom 15 rows root in the concept of φ being a map
mapping into field conjugates, a concept relating to minimal polynomials [52, p. 286], which we
shall not dive into. Notice

(L̂Bφ(b))0 =

7∑
k=0

λkb
(2k) = f(b) (4.2.10)

for any b ∈ F , which was the desired action. As for vA, let vB := φ(vA) and add it to the state
byte. To apply the matrix on the entire state, it suffices to form the diagonal matrix composed of
4Nb LB blocks and add vB to each entry, while using S in a column-major enumeration.

(ii’) ShiftRows [51, pp. 5-6]: The shifting of the F 8 elements inside S is the same as in the original AES.
The matrix MA is generalized to MB by replacing every one with E8 for a F 16Nb×16Nb permutation
matrix performing this action.

(iii’) MixColumns [51, p. 6]: In the AES, we could represent this step as a matrix multiplication with
MA. In BES, we analogously define

Ck
B :=


2(2

k) 3(2
k) 1 1

1 2(2
k) 3(2

k) 1

1 1 2(2
k) 3(2

k)

3(2
k) 1 1 2(2

k)

 ∈ F 4×4 (4.2.11)

for k ∈ [0, 7]N. This matrix has the property

Ck
B

(
y
(2k)
0 , y

(2k)
1 , y

(2k)
2 , y

(2k)
3

)t

=

(
z
(2k)
0 , z

(2k)
1 , z

(2k)
2 , z

(2k)
3

)t

(4.2.12)

59

for y, z ∈ F 4, preserving the aforementioned so-called conjugacy property. We may now set

MB :=



C0
B · · · 0 · · · 0 0 0
... · · · 0 0 0
0 · · · C7

B · · · 0 0 0
...

...
...

...
...

0 0 0 · · · C0
B · · · 0

0 0 0 · · ·
...

0 0 0 · · · 0 · · · C7
B


∈ F 32Nb×32Nb (4.2.13)

Multiplying with S in column-major enumeration, while enumerating its entries from F 8 as row
vectors gives the desired map.

(iv’) AddRoundKey [51, p. 5]: We perform the same addition as in Rijndael S 7→ S+K̃i in the i ∈ [0, Nr]th
round.

(v’) KeySchedule [51, p. 8]: All operations in the key schedule have been explained in the explanations
of the previous suboperations, so we can carry it over identically by, instead of using F as the bytes
in the key expansion array W ∈ (F 8)4×4Nb(Nr+1) ∼= F 32×4Nb(Nr+1), the operations being addition
and the map ρ, which takes on the form b 7→ L̂B(ι(b0), ..., ι(b7))

t+vB , and the polynomial addition.
The round constants are also thus φ(rj), j ∈ N≥1.

We may summarize this discussion with the following theorem.
Theorem 4.2. If α : F 4×Nb × F 4×Nk → F 4×Nb denotes the AES cipher and β : F 32×Nb × F 32×Nk →
F 32×Nb its associated BES-cipher respectively, then the following diagram commutes:

F 4×Nb × F 4×Nk F 32×Nb × F 32×Nk

F 4×Nb F 32×Nb

φ4×Nb
× φ4×Nk

β

φ−1
4×Nb

α

Note that in the above diagram, cartesian products of functions are functions taken component-wise and
the arguments of α and β are in order (plaintext, key).

4.3 A BES Multivariate Equation System for AES

With the previous description of BES for AES, we can now form a multivariate equation system for
key recovery over F . Note, that we do not follow Murphy and Robshaw with the derivation of their
multivariate quadratic equation system in [51, pp. 11-13]. Consider the description of AES in Figure 15.
We are given a plaintext P ∈ (F 8)4×Nb and a ciphertext C ∈ (F 8)4×Nb , where we know, that C was
produced from P via running BES using a key K ∈ (F 8)4×Nk . We have an initial addition of the first
4×Nb sized part of the key K, which is K̃0, giving the state S0, then execute Nr − 1 ”normal” rounds
of AES before entering the last round, where MixColumn is omitted.

P 7→ S0 7→ S1 7→ ... 7→ SNr−1 7→ SNr
= C (4.3.1)

This gives the following equation system over F .

S0 = P + K̃0

Ti = LBSi−1 + VB i ∈ [1, Nr − 1]N
Ui = SBTi i ∈ [1, Nr − 1]N
Si = MBUi + K̃i i ∈ [1, Nr − 1]N

TNr
= LBSNr−1 + VB

UNr = SBTNr

SNr
= UNr

+ K̃Nr

C = SNr

(4.3.2)

60

Here, VB =
(
vB ... vB

)t ∈ (F8)4Nb . This is not the same system as in [51, pp. 11-13], where the
addition of vB and even the application of SB were omitted. We further have the BES key schedule as

wij = kij i ∈ [0, 3]N, j ∈ [0, Nk − 1]N
w0j = w0(j−Nk) + LBw1(j−1) + VB + rj/Nk

j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 0 mod Nk

wij = wi(j−Nk) + LBw((i+1) mod 4)(j−1) + VB i ∈ [1, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j = 0 mod Nk

wij = wi(j−Nk) + LBwi(j−1) + VB i ∈ [0, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N,
j = 4 mod Nk, Nr > 6

wij = wi(j−Nk) + wi(j−1) i ∈ [0, 3]N, j ∈ [Nk, Nb(Nr + 1)− 1]N, j 6= 0 mod Nk

K̃i = (wi′j′)i′∈[0,3]N,j′∈[Nbi,Nb(i+1)−1]N

(4.3.3)

The last aspect we want to analyze wrt. the BES system is the size of this system, and thus the variable
and equation count. Consider first the initial equation system. From the count, we omit the variables
U1, ..., UNr

, as they are just permutations of the existing T1, ..., TNr
variables. We also do not count the

variables for W in the key schedule. Furthermore, we omit the equations for the Ui’s, C = SNr
and

for the K̃i assignments. Consider the following table, in which we count the number of variables and
equations in each line, including the key schedule, where we mean by ”new”, that the variables appearing
in the equation have not appeared in a previous row.

Equation New Variables Equations Occurences
S0 = P + K̃0 8Nb 32Nb 1
Ti = LBSi−1 + VB 4Nb 32Nb Nr − 1
Ui = SBTi Omitted Omitted Omitted
Si =MBUi + K̃i 8Nb 32Nb Nr − 1
TNr

= LBSNr−1 + VB 4Nb 32Nb 1
UNr

= SBTNr
Omitted Omitted Omitted

SNr = UNr + K̃Nr 8Nb 32Nb 1
C = SNr Omitted Omitted Omitted
wij = kij Omitted Omitted Omitted
w0j = w0(j−Nk) + LBw1(j−1) + VB + rj/Nk

Omitted 8 ≤ 15
wij = wi(j−Nk) + LBw((i+1) mod 4)(j−1) + VB Omitted 8 ≤ 45
wij = wi(j−Nk) + LBwi(j−1) + VB Omitted 8 ≤ 60
wij = wi(j−Nk) + wi(j−1) Omitted 8 ≤ 180

K̃i = (wi′j′)i′∈[0,3]N,j′∈[Nbi,Nb(i+1)−1]N Omitted Omitted Omitted

Table 2: Sizes of equations in the BES system, where we upper bound the occurences of some of the key
schedule equations by letting (Nk, Nr) = (4, 14) wlog..

Theorem 4.3 (Equation System Size for BES Key Recovery). Using BES, the key for a given AES
encryption can be recovered using an equation system of

20Nb + (Nr − 1)12Nb variables and 96Nb + (Nr − 1)64Nb + 2400 equations. (4.3.4)

(Nk, Nr) (4, 10) (6, 12) (8, 14)
(m,n) (416, 4576) (512, 5088) (608, 5600)

Table 3: Direct BES system sizes. m ∈ N is the variable count and n ∈ N the equation count each.
Nb = 4 for AES, as previously said. These systems are not yet linearized.

The aforementioned construction for a multivariate equation system for AES using BES demonstrates
the technique. Consider also, that we, with this construction, have a system, where the polynomial
degrees range up to 128, as we have directly used the conjugates in the system. The following subsection
is dedicated to presenting recent results for solving this system of equations.

61

4.4 Overview of Recent Research on the Approach

We present a discussion of recent results on the cryptanalysis of AES, especially under the HHL algorithm,
by studying the results of three research groups by Courtois, Chen and Ding.

Algebraic Cryptanalysis via XSL

The classical literature on the cryptanalysis of AES is extensive [49, 50, 53, 54]. In this paragraph,
we focus on algebraic cryptanalysis using linear systems of equations, as we have been aluding to. We
present three major results, along with the previous results by Murphy and Robshaw.
In 2002, the cryptanalysts Courtois and Pieprzyk presented the so-called Extended Sparse Lineariza-
tion (XSL) attack on block ciphers, especially on AES [55]. It improved upon the previous Extended
Linearization (XL) technique. The essential idea is to form systems of multivariate quadratic (MQ)
equations, which are then formed into SLEs by introducing variables for the monomials [53, p. 2]. XSL
attempts to utilize the case, where that equation system is massively overdefined. XSL came under quite
some controversy, especially since the effectiveness of the attacks is largely debated [53, p. 2] [50, pp.
15-16]. XSL has to this day never been implemented.
The original XSL paper is also not very explicit wrt. the actual construction of the MQ system. Courtois
and Pieprzyk claim the following result.

Theorem 4.4 (Direct Rijndael MQ System Complexity). The problem of recovering the key from a
Rijndael encryption of one plaintext with parameters (Nb, Nk, Nr) can be reduced to the problem of
solving an MQ system with m quadratic equations and n variables, where

m = 160NbNr + 5(Lk − 32Nk) n = 32Nb(Nr − 1) + Lk (4.4.1)

with

Lk :=

{
32
(
Nk +

⌈
NbNr+Nb−Nk

Nk

⌉)
Nk 6= 8

32
(
Nk +

⌈
NbNr+Nb−Nk

4

⌉)
Nk = 8

(4.4.2)

The constants in the theorem are a direct result of using the theorem on [55, p. 22] and substituting
r := 40 as on the same page and s = 8 from p. 4. Note, that we have Hk = 32Nk in their description,
following pp. 3-4. The definition for Lk can be found on p. 21.

(Nk, Nr) (4, 10) (6, 12) (8, 14)
(m,n) (8000, 1600) (9600, 1920) (11200, 2240)

Table 4: Direct AES MQ system sizes. Nb = 4 for AES, as previously said. These systems are not yet
linearized.

The equation systems of Murphy et al. and Courtois et al. are not the same. The techniques proposed
by Courtois et al. yield the following theorem, see [55, p. 13], which we shall not further study.

Theorem 4.5. Performing an XSL attack on AES-128 requires approximately

Tω ≈ 2230 (4.4.3)

operations classically.

XSL is one of the more widely known approaches to the algebraic cryptanalysis of AES. Few authors
have yet considered using the HHL algorithm for this task. We briefly overview the results by Chen and
Gao [4, 54] and, following their results, Ding et al. [5].

Chen and Gaos Results

Chen and Gao investigated the applicability of HHL on the cryptanalysis of AES in a longer 2017 paper
[4]. The essential idea of using a linear system for the cryptanalysis is not considered at first, but rather
the problem of solving Boolean polynomial equation systems directly. The HHL algorithm itself poses
three challenges to this problem:

62

(i) The algorithm yields a result vector over the field C and not GF(2). This can be mitigated by
including additional equations of form {x21 − x1, ..., x

2
n − xn} with x1, ..., xn being the variables

inside of the original Boolean polynomial system, as in C each equation can only be satisfied, iff
x1, ..., xn ∈ GF(2) using xi = |xi|ei arg(xi) for i ∈ [1, n]N.

(ii) HHL may produce a wrong result or it may produce a result despite the system being unsolvable.

(iii) The result is a quantum state and not a classically accessible Boolean vector.

An Application of HHL The first major result is the application of the HHL algorithm under two
assumptions [4, pp. 6-8].

I. The given matrix A ∈ CM×N , M := r2ν with r, ν ∈ N≥1, N ∈ N≥1 is s-sparse and possesses a
decomposition into s 1-sparse matrices of form A =

∑s
j=1Aj , where the entries of each matrix A

may be queried in time O(γ) with γ being a complexity term.

II. The given vector b ∈ {0, 1}M suffices bi = 1, iff i = k2ν for k ∈ [0, ρ− 1]N for a ρ ∈ [0, r]N.

We may especially note the very tiny decomposition of A into s other matrices. Chen and Gao describe
the effects of the assumptions and the decomposition on the algorithm runtime, as well as the efficient
initializability of the state |b〉, which is associated to b. The result is then, that

Theorem 4.6. Given the matrix A and the vector b as in the stated assumptions and under the use of
the HHL algorithm as in Algorithm 2, as well as an error cap ε ∈ R>0, the linear system of equations
Ax = b can be solved in time Õ((log(M +N) + γ)sκ2/ε).

A Sufficiently Sparse Macaulay System for Boolean Polynomial Equation Systems For a
given multivariate Boolean polynomial equation system F := {f1, ..., fr} ⊆ GF(2)[x1, ..., xn], r ∈ N≥1,
n ∈ N≥1 to be solved, meaning, that we want to find some s ∈ GF(2)n with f1(s) = ... = fr(s) = 0,
Chen and Gao develop a Macaulay linear system, i.e. an SLE describing the structure of a polynomial
equation system, which suffice the assumptions stated in Section 4.4. The construction of the Macaulay
linear system involves a bit of machinery, so we may omit it. It can be found on [4, pp. 8-11]. The next
theorem summarizes the result.

Theorem 4.7. Let TF :=
∑

f∈F tf be the so-called total sparseness of F , where tf ∈ N denotes the
number of terms in a given Boolean polynomial f . A given polynomial Boolean equation system F can
be described by a Macaulay linear system MFx = bF with the following properties:

a) MF is TF -sparse and MF can be decomposed into TF 1-sparse matrices, each of which may be
queried in time O(n log2(D)+ log2(r)) for some D ∈ N, s.t. D ≥ maxf∈F df with df ∈ N being the
total degree of f , i.e. the maximum of the sums of the degrees in each monomial. So MF suffices
assumption I.

b) bF suffices assumption II.

Resulting Algorithms Using the previous two results, the authors describe multiple algorithms.
First, we consider a general algorithm for solving a given multivariate Boolean equation system by
solving it over C[x1, ..., xn] first using a quantum algorithm. We call a solution to such a complex system
boolean, if all of the entries in the result vector are in GF(2).

Theorem 4.8. Given a polynomial equation system F ⊆ C[x1, ..., xn] and an error cap ε ∈ R>0, there
is a quantum algorithm, which decides the solvability of F for recovering a Boolean solution, i.e. one in
Fn
2 , with success probability at least 1− ε and, if so, returns a solution vector in time

Õ(n2.5(n+ TF)κ
2 log2(1/ε)) (4.4.4)

where κ denotes the maximal condition number of the linear system fpr F ′
B ∪{x21−x1, ..., x2n−xn} with

F ′
B being the, during the algorithms execution, modified system, where any occurence of xmi has been

replaced with xi for i ∈ [1, n]N and m ∈ N.

63

The description and proof of runtime can be found on [4, pp. 16-19]. We further have, in the same
manner as Grovers algorithm, a result regarding multiple solutions.

Theorem 4.9. The quantum algorithm described in Theorem 4.8 can be extended to find all ω ∈ N
solutions in time

Õ(n2.5(n+ TF + ω)ωκ2 log2(1/ε)) (4.4.5)

with success probability (1− ε)ω.

These two results are further modified for linear Boolean systems, which we will not further present.

Application to AES Lastly, the results for solving Boolean polynomial systems are applied to AES
using the BES cipher, see Section 4.2, in [4, pp. 24-25, pp. 32-34]. The obtained result is summarized
in the following theorem.

Theorem 4.10. There exists a quantum algorithm, which recovers the key of an AES encryption in
time {

O(
√
2α0α

2.5
1 α2κ

2 log2(1/ε)) Nk ≤ 6

O(
√
2β0β

2.5
1 β2κ

2 log2(1/ε)) Nk > 6
(4.4.6)

withα0 β0
α1 β1
α2 β2

 :=

log2(5024NkNr + 224Nk + 5472Nr) + 3 log2(5024NkNr + 224Nk + 10272Nr) + 3
5024NkNr + 224Nk + 5472Nr 5024NkNr + 224Nk + 10272Nr

34592NkNr + 1376Nk + 38112Nr 34592NkNr + 1376Nk + 71520Nr


(4.4.7)

To illustrate the runtimes, consider the following table.

AES-version Runtime Factor
AES-128 273.30

AES-192 276.69

AES-256 278.53

Table 5: Runtimes of the AES key-recovery algorithm proposed by Chen and Gao, taken directly from
[4, p. 26]. The runtime factor is without any asymptotic factors or the squared condition number.

Discussion We may be sceptical of the results presented, especially in the equation system used for
the key recovery for AES. For one, it is not clear, why the presented system corresponds to the BES
system described by Murphy and Robshaw. Also, the time of the Hamiltonian simulation may be wrong
due to a mistake by Harrow, as we have argued in Section 3.4. Chen and Gao have called their algorithm
”complicated” [4, p. 5], possibly partly because of the rather sophisticated Gröbner basis techniques
used in [4, pp. 11-15], [5, p. 2] have given a more elementary proof in their improved version of the
algorithm. There have also been criticisms voiced by other researchers. For instance, Gao et al. argues
[54, p. 2], that the equation system for AES is incomplete. Furthermore, a major question was left open,
which is the range of the condition number κ. However, what the result indicates, is a first hint to the
HHL algorithm not being sufficient for the cryptanalysis of AES, which is be further supported by the
next paragraph.

Further Research by Ding et al.

Bounding the condition number is essential to obtain a clear bound on the runtime of Chen and Gaos
cryptanalysis. Ding et al. prove a lower bound on the condition number, which depends on the sparsity
of the solution vector of a linear system [5].

64

Two Preliminary Notions We recall and introduce a few notions. One essential concept here is the
truncated condition number.

Definition 4.11. Let A ∈ Cm×n with m,n ∈ N≥1 and b ∈ Cn \ {0}. The truncated condition number
κb(A) of the linear system Ax = b is defined as

κb(A) := ‖A‖
‖A+b‖
‖b‖

(4.4.8)

where the norm used is the operator norm and A+ is the Moore-Penrose Pseudoinverse of A following
Definition 1.15.

Lemma 4.12. For any matrix A and vector b as in Definition 4.11, we have

κb(A) ≤ κ(A) (4.4.9)

Proof. Holds by ∥∥A+
∥∥ ≥ ∥∥A+b

∥∥/‖b‖ (4.4.10)

■

The importance of this lemma lies in the fact, that lower bounds for condition numbers can be acquired
with truncated condition numbers.

Theorem 4.13. For binary vectors u, v ∈ {0, 1}n define the Hamming distance and Hamming weight as

dH : Fn
2 × Fn

2 → N, (u, v) 7→ |{i | i ∈ [1, n]N ∧ ui 6= vi}| wH : Fn
2 → R≥0, u 7→

√
dH(u, 0) (4.4.11)

Then dH is a metric and wH is a norm.

These terms are known from general coding theory, see [56, pp. 100-101].

Lower Bounds of Truncated Condition Numbers for Macaulay Linear Systems As we have
seen, lower bounding a fixed truncated condition number is sufficient for lower bounding the runtime of
Chen and Gaos procedures. The results regarding the truncated condition number in the context of the
Macaulay matrices involved in Chen and Gaos research can be found in [5, pp. 8-13]. Whilst we have
not introduced the Macaulay matrix or even the matrices involved in the original work, we shall still
present the results.
For a given Macaulay SLE problem Mx = b with M denoting the Chen and Gao Macaulay system for
key recovery and following [5, pp. 8-9], we have

‖M‖ ≥ 1 (4.4.12)

Thus, if we assume wlog., as described in Section 3.4, ‖b‖ = 1, we have

κ(M) ≥ κ|b⟩(M) ≥ ‖y‖ (4.4.13)

where y denotes a solution vector to the system. The reduction that follows in [5, pp. 9-10], in combi-
nation with a few elementary results regarding sets in binary vector spaces yield the following theorem.

Theorem 4.14. Let F ⊆ C[x1, ..., xn], n ∈ N≥1, be a polynomial equation system and Mx = b be the
Macaulay system for finding a Boolean solution to F proposed by Chen and Gao. Then we have for the
t ∈ N≥1 solutions of F a1, ..., at ∈ Fn

2

wH(a1) = ... = wH(at) (4.4.14)

and

κb(M) ≥
√
(3n)h/t (4.4.15)

where h := wH(a1).

65

In [5, pp. 13-21], Ding et al. have further presented an improved Macaulay system and associated
solution algorithm.
Remark 4.15 (The Condition Number of the Macaulay Matrix as a Block Cipher Design Criterion). The
example of the algebraic cryptanalysis of AES demonstrates the possibility of formulating block cipher
key recovery problems as large equation systems. Following the results we have discussed, especially by
Ding et al., we may draw two conclusions to the design criterions a block cipher should fulfill.
First, it seems tempting to conclude, that a huge number of dependencies yielding a large size for a key
recovery equation system may suffice to make a cipher strong. But one major point in the design of XSL
was, that if the system is huge, but massively overdefined, an attacker may be able to break it very fast
[55, p. 15].
Second, given the results presented, a designer of a block cipher should apply the results by Chen and Gao
and Ding et al. on the key recovery equation systems, which are associated to the cipher. While Chen
and Gao give the quantum algorithm for breaking it, the results by Ding et al. show the impossibility
of key recovery using this technique, if the associated bound is very low. The general exponential lower
bound also yields some content for discussions: Is the Macaulay approach in this form not sufficient and
can be substantially improved or does the analysis by Ding et al. at some point go wrong? If neither case
holds, there is one more possibility: Inside of the cryptographic community, there has been discussion on
whether the condition number of associated key recovery equation systems of a block cipher fulfill more
general design criteria for block ciphers. We are not aware of recent major results in this topic. Such a
result would most likely make this approach unfeasible in general.

66

A Omitted Details

Lemma 2.22. For any α ∈ C and m ∈ N≥1, we have

m−1∑
j=0

cos((2j + 1)α) =
sin(2mα)

2 sin(α)
(2.5.22)

Proof by induction over m. For m = 1, consider

cos(α) =
2 cos(α) sin(α)

2 sin(α)
=

sin(2α)

2 sin(α)
(A.0.1)

under the use of Theorem B.4.
Suppose the statement holds for an arbitrary, but fixed m. Then for the inductive step, under the usage
of the assumption, the addition of a skillful zero and using Theorem B.4 twice, we obtain

(m+1)−1∑
j=0

cos((2j + 1)α) =
sin(2mα)

2 sin(α)
+ cos((2m+ 1)α) (A.0.2)

=
sin((2m+ 1)α− α) + 2 cos((2m+ 1)α) sin(α)

2 sin(α)
(A.0.3)

=
− cos((2m+ 1)α) sin(α) + sin((2m+ 1)α) cos(α) + 2 cos((2m+ 1)α) sin(α)

2 sin(α)
(A.0.4)

=
sin(2(m+ 1)α)

2 sin(α)
(A.0.5)

By the principle of the theorem of induction, the statement is proven. ■

Lemma 3.11. The following bounds hold for any x ∈ R≥0:

x− x3

6
≤ sin(x) ≤ x (3.3.11)

With strict inequalities for x 6= 0.

Proof. Let f : R→ R, x 7→ x−x3

6 and let x ∈ R≥0 be fixed. From real analysis we know that f ′(x) = 1−x2

2

and thus that f is monotonically decreasing in [
√
2,∞). Especially f(3) = − 3

2 . So the first inequality
holds in [3,∞). We prove the statement for [0, 3).
The sine can be represented as a sum of some first terms of its Taylor series Theorem B.1, and in sum
with the following Langrangian remainder terms for some ξ1, ξ2 ∈ [0, x]:

sin(x) = x− x3

6
+

sin(ξ1)

4!
x4 = x− sin(ξ2)

2!
x2 (A.0.6)

See [38, p. 284]. Since sin(ξ2) ≥ 0 for x ∈ [0, 1), we have the upper bound. For x ∈ [0, π] and especially
x ∈ [0, 3) we have sin(ξ1) ≥ 0, thus concluding the lower bound. The strict inequality can be read off
directly. ■

Lemma 3.15. Defining for T := 2t, t ∈ N≥5

l↑ : [2π, πT]→ R, δ 7→ sin

(
δ + π

2T

)
sin

(
δ − π
2T

)
l↓ : [2π, πT]→ R, δ 7→ c1

π2

δ2

T 2
(3.3.32)

where c1 := 0.9975 < sin
(
π
2 −

π
64

)
, we have l↑ > l↓.

Proof. We first calculate the derivatives of both functions (i) and then divide the interval into two pieces,
for which we argue the statement analytically (ii) and geometrically (iii).

67

(i) Observe, that

l↑
′
(δ) =

1

2T

(
cos

(
δ + π

2T

)
sin

(
δ − π
2T

)
+ sin

(
δ + π

2T

)
cos

(
δ − π
2T

))
(1)
=

1

2T
sin

(
δ

T

)
(A.0.7)

l↓
′
(δ) =

2c1
π2

δ

T 2
(A.0.8)

(1) We use Theorem B.4.

Notice, that both functions grow strictly monotonically. Consider the partition

[2π, πT] =
[
2π,

π

2
T
]
∪
(π
2
T, πT

]
(A.0.9)

(ii) It suffices to show, that l↑′ > l↓
′ and

(
l↑(2π), l↑

(
π
2T
))

>
(
l↓(2π), l↓

(
π
2T
))

. Let δ ∈
[
2π, π2T

]
.

Going from left to right, we first have with Lemma 3.11 and −δ2 ≥ −π2

4 T
2

l↑
′
(δ) >

1

2T

δ

T

(
1− 1

6

δ2

T 2

)
≥ 1

2

(
1− π2

24

)
δ

T 2
>

2c1
π2

δ

T 2
= l↓

′
(δ) (A.0.10)

Then, it holds, that

l↑(2π) >
3π2

4T 2

(
1− 1

6

10π2

4T 2

)
>

c3
T 2

>
4c1
T 2

= l↓(2π) (A.0.11)

where c3 := 7.3724 < 3π2

4

(
1− 1

6
10π2

4·322

)
. Note, that we use Lemma 3.11 twice in the product for

the first lower bound, which is allowed, as the argument is still inside of (0, π/2). The third claim
follows directly from the larger strictly monotonic growth of l↑ and the initial inequality at 2π.

(iii) Since l↑
′′
∣∣∣
(π

2 T,πT]
< 0, the function is concave [38, pp. 185-187], whilst the parabola l↓ is clearly

convex. First, we have with the sinoal symmetry around π
2T

l↑(πT) = sin2
(π
2
− π

64

)
> c1 = l↓(πT) (A.0.12)

We have g↑ > g↓, where g↑ is the line segment connecting
(
π
2T, l

↑ (π
2T
))

and (πT, l↑(πT)), and
where g↓ connects

(
π
2T, l

↓ (π
2T
))

and (πT, l↓(πT)) respectively. We have

l↑
∣∣
(π

2 T,πT] ≥ g
↑ > g↓ ≥ l↓

∣∣
(π

2 T,πT] (A.0.13)

concluding the proof.

■

68

B Formula Sheet

This appendix presents some of the formulas used. We refer to [38] and [57], but any undergraduate
Analysis and Complex Analysis textbook will most likely present these results.

Theorem B.1 (Exponential, Sine and Cosine Taylor Series). For any x ∈ C it holds that:

exp(x) =

∞∑
k=0

xk

k!
sin(x) =

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
cos(x) =

∞∑
k=0

(−1)k x2k

(2k)!
(B.0.1)

[38, p. 288], gives a detailed calculation of the latter two expansions for R. [57, p. 5], states these power
series expansions for C.

Definition B.2 (Exponential Sine and Cosine). For any x ∈ C we have:

sin(x) :=
eix − e−ix

2i
cos(x) :=

eix + e−ix

2
(B.0.2)

The statement for R can be found in [38, pp. 146-147], it is clear that both can be obtained by direct
calculation and also hold for C.

Theorem B.3 (Trigonometric Pythagoras). For any x ∈ C the following holds:

sin2(x) + cos2(x) = 1 (B.0.3)

The proof can be found in [38, p. 140].

Theorem B.4 (Sine and Cosine Addition Theorems). For any x, y ∈ C it holds that:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) (B.0.4)

Again, the proof can be found in [38, p. 140].

Theorem B.5 (Geometric Sum). For any q ∈ C and n ∈ N, we have

n∑
i=0

qi =

{
1−qn+1

1−q q 6= 1

n+ 1 q = 1
(B.0.5)

Proof. The first case follows directly from
(∑n

i=0 q
i
)
(1− q) = 1+

(∑n
i=1

(
−qi + qi

))
− qn+1, the second

case by addition. ■

Theorem B.6 (Cauchy-Schwarz Inequality). For any x, y ∈ Cn, n ∈ N≥1, we have

|〈x, y〉| ≤ ‖x‖‖y‖ (B.0.6)

The proof can be found in [2, p. 220].

Theorem B.7. We have
∞∑
k=1

1

k4
=
π4

90
(B.0.7)

In close relation to the Riemann ζ-function, the proof of this limit can be found in [58, pp. 296-298].

69

C Hardness Results

In this appendix, we quickly present the hardness results on the solving of SLEs via quantum algorithms
by Harrow et al. [3, pp. 12-14]. This topic is not included in the main body of the thesis, but shall be
visited, s.t. we have worked through the entire original HHL paper, as well as got some intuition on the
computational complexity theory of matrix inversion.

PSPACE, PP, BPP and BQP

The landscape of computational complexity classes is vast. Besides classes dedicated to capturing the time
complexity of a problem, there are also notions for considering the space complexity of a problem. We
use the books by Sipser and Barak [18, 59]. Recall the concepts of a language [59, p. 16], computability
in the sense of Turing machines [59, p. 168], the complexity classes P [59, p. 286] and NP [59, pp.
293-294], SAT [59, p. 299] and polynomial time reducibility [59, p. 300]. We do not introduce these
classes rigorously. Let Σ be an alphabet.

Definition C.1. We define the following notions.

(i) The complexity class PSPACE is composed of all languages L ⊆ Σ∗, for which the associated
decision problem Σ∗ 3 ω ∈ L can be decided with polynomial space complexity.

(ii) A language B ⊆ Σ∗ is called PSPACE-complete, if B ∈ PSPACE and A ≤p B for any A ∈ PSPACE.

(iii) The language TQBF is composed of all Boolean formulas with existential or universal quantifiers,
for which an assignment of the quantifiers making the associated statement true exists.

These definitions follow [59, pp. 336-338], where we cite in this order.

Theorem C.2. TQBF is PSPACE-complete.

The proof is based on a Savitchs Theorem and can be found in [59, pp. 339-341].

Besides P, NP and PSPACE, classes dedicated to decision problems, other classes have arisen. We want
to consider probabilistic and especially quantum complexity classes. The following definition captures
the most important classes we want to know about.

Definition C.3. We define the following complexity classes.

(i) The complexity class PP is the set of languages L ∈ Σ∗, s.t. there is a probabilistic polynomial-time
Turing machine T , s.t. it successfully and a polynomial p ∈ R[x], p(N) ⊆ N, s.t. x ∈ L, |x| ∈ N
denoting the word length, iff ∣∣∣{y ∈ Σp(|x|) |M(x, y) = 1

}∣∣∣ ≥ 1

2
2p(|x|) (C.0.1)

(ii) The complexity class BPP is the set of languages L ∈ Σ∗, s.t. there is a probabilistic polynomial-
time Turing machine T , s.t. it successfully and a polynomial p ∈ R[x], p(N) ⊆ N, s.t. x ∈ L,
|x| ∈ N denoting the word length, iff∣∣∣{y ∈ Σp(|x|) |M(x, y) = 1

}∣∣∣ ≥ 2

3
2p(|x|) (C.0.2)

(iii) The complexity class BQP is the set of languages L ∈ Σ∗, s.t. there is a polynomial-time quantum
algorithm, which solves the decision problem w ∈ L for a w ∈ Σ∗ with a success probability of at
least 2/3.

The notion of completeness carries over analogously from PSPACE-completeness. We interpret (i) of
this definition by considering x to be the problem instance of interest and y to be one of the possible
solutions. The polynomial p thus computes the required length of y. The bound on the right specifies,
that at least half of these possible values of y are valid solutions to the problem given by x. Another

70

way of phrasing this is, that there is an algorithm, specified by M and p, which solves x ∈ L with a
probability of at least one half, as we may then choose y uniformly at random. These first two definitions,
with this equivalent interpretation, follow the book from Arora and Barak [18, p. 173, pp. 116-117].
The definition of BQP follows [18, p. 412], although we do not directly fix the set of allowed unitaries.

The following three results are known.

Theorem C.4. The following statements hold.

(i) BQP ⊆ PSPACE.

(ii) BPP ⊆ BQP.

(iii) BQP ⊆ PP.

The first and third parts are major results from [7, p. 201] and [60, p. 1538]. Both proofs utilize a
technique called sum of histories. The second statement follows from the fact, that we can simulate
any classical simulation using a gate quantum algorithm, so also probabilistic algorithms, as Nielsen and
Chuang point out [7, p. 201]. It is interesting to note, that all converse directions are unknown, but
provide possibilities for determining the hardness of a problem in a quantum complexity class. Especially,
the second statement is widely conjectured to be false.

The Problem MATRIXINVERSION

Following Harrow et al., we give a formal definition for the problem of matrix inversion. Furthermore, we
present the hardness results from the HHL paper and explain their hardness with regard to the previously
presented complexity classes and problems.

Definition C.5. Let N := 2n for n ∈ N≥2. We say, that a quantum algorithm solves the problem
MATRIXINVERSION, if for a given Hermitian, O(1)-sparse matrix A ∈ CN×N with κ := κ(A) and 1

κ ≤
λ ≤ 1 for any eigenvalue λ ∈ R of A, for which the entries in a row can either be computed by an algorithm
with runtime poly(log2(N)) or an oracle, it computes a quantum state |x〉 with

∥∥∥|x〉 − 1
∥A−1|0⟩∥A

−1 |0〉
∥∥∥ <

ε ∈ R>0 and outputs a 1 when measuring conditioned on the first qubit. If A is given by an oracle, we
may refer to the algorithm as being relativizing. We say a classical algorithm solves this problem, if it
outputs the vector |x〉.

This definition follows [3, p. 12]. There are also more general definitions for relativizing algorithms [59,
pp. 376-377], but this notion suffices for this text.

Theorem C.6. MATRIXINVERSION is BQP-complete.

The proof of this theorem can be found in [3, p. 4]. Any quantum computation can thus be expressed
via an SLE after a polynomial quantum reduction. Harrow et al. then also have the following result [3,
pp. 12-14].

Theorem C.7. The following statements hold. Throughout this theorem, the error cap ε of any algo-
rithm here shall be fixed.

(i) If there is a quantum algorithm for solving MATRIXINVERSION with time complexity

κ1−δ poly(log2(N)) (C.0.3)

with δ ∈ (0, 1), then BQP = PSPACE.

(ii) No relativizing quantum algorithm for MATRIXINVERSION can run in time κ1−δ poly(log2(N)).

(iii) If there exists a classical algorithm for MATRIXINVERSION with a runtime of poly(κ, log2(N)),
then BQP = BPP.

(iv) No relativizing classical algorithm for MATRIXINVERSION can run in time Nα2βκ, unless 3α+
4β ≥ 1/2 for any α, β ∈ R>0.

71

The error cap is fixed to e.g. 1/100, because we consider the other parameters in these results. We want
to discuss the first and third statement. For the first part of the theorem, the first direction is already
proven via (i) in Theorem C.4. Taking a problem in PSPACE, it can be polynomially reduced to the
problem of TQBF and then, using so-called exhaustive enumeration, an associated formula can be used
to obtain an instance of the MATRIXINVERSION problem. Given the stated complexity, we can then
derive the claimed polynomial reduction, giving PSPACE ⊆ BQP. This, however, is an open problem.
For the third statement, we again have an open problem in the direction BQP ⊆ BPP. The proof is
analogous to the proof of the first statement.

Theorem C.8. The following statements hold.

(i) If there is a quantum algorithm for solving MATRIXINVERSION in time

poly(κ, log2(N), log2(1/ε)) (C.0.4)

then BQP = PP.

(ii) No relativizing algorithm for MATRIXINVERSION can run in time O(Nα poly(κ)/εβ) for α, β ∈
R>0, unless α+ β ≥ 1.

This result can be found in [3, p. 14]. We consider the first statement only. Again, we already have
BQP ⊆ PP and want to prove PP ⊆ BQP. The authors use the PP-complete problem #SAT, which
counts the fulfilling assignments of the variables in a given Boolean formula ϕ of n ∈ N≥1 variables
and reduce it to a problem instance of MATRIXINVERSION. One major point in the proof is, that
the log2(N) runtime term mitigates the complexity of thte size of the reduced equation system and the
log2(1/ε) factor mitigates the complexity induced by chosing an exponentially small error.
Remark C.9. One may now question the validity of the result by Childs et al. in Section 3.5. However,
as Childs et al. point out [40, p. 2], the measurement of the first qubit as in MATRIXINVERSION is a
crucial difference in the design of the different algorithms, making a the possibility of a subexponential
error algorithm of this form unlikely.

72

References

[1] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics. Cambridge University
Press, Aug. 2018. doi: 10.1017/9781316995433.

[2] D. Werner, Funktionalanalysis. Springer Berlin Heidelberg, 2018. doi: 10.1007/978- 3- 662-
55407-4.

[3] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for solving linear systems of
equations,” Phys. Rev. Lett. vol. 15, no. 103, pp. 150502 (2009), Nov. 19, 2008. doi: 10.1103/
PhysRevLett.103.150502. arXiv: 0811.3171 [quant-ph].

[4] Y.-A. Chen and X.-S. Gao, “Quantum Algorithms for Boolean Equation Solving and Quantum
Algebraic Attack on Cryptosystems,” Dec. 18, 2017. arXiv: 1712.06239 [quant-ph].

[5] J. Ding, V. Gheorghiu, A. Gilyén, S. Hallgren, and J. Li, “Limitations of the Macaulay matrix
approach for using the HHL algorithm to solve multivariate polynomial systems,” 2021. doi: 10.
48550/ARXIV.2111.00405.

[6] W. Scherer, Mathematics of Quantum Computing. Springer International Publishing, 2019. doi:
10.1007/978-3-030-12358-1.

[7] M. A. Nielsen, Quantum computation and quantum information, 10th ed. Cambridge University
Press, 2010, isbn: 9781107002173.

[8] O. Forster, Analysis 2, Differentialrechnung im IRn, gewöhnliche Differentialgleichungen. Springer
Spektrum, 2017, isbn: 9783658194109.

[9] G. Fischer and B. Springborn, Lineare Algebra. Springer Berlin Heidelberg, 2020. doi: 10.1007/
978-3-662-61645-1.

[10] K. Janich, Lineare Algebra. Springer, 2010, isbn: 9783540755012.
[11] T. Lyche, Numerical Linear Algebra and Matrix Factorizations. Springer, isbn: 9783030364670.
[12] D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher, and L. Wossnig, “Quantum linear

systems algorithms: a primer,” Feb. 22, 2018. arXiv: 1802.08227 [quant-ph].
[13] S. Waldmann, Lineare Algebra 2. Springer Berlin Heidelberg, 2022. doi: 10.1007/978-3-662-

63639-8.
[14] M.-D. Choi, “Tricks or Treats with the Hilbert Matrix,” The American Mathematical Monthly,

vol. 90, no. 5, May 1983. doi: 10.2307/2975779.
[15] H. S. Wilf, Finite Sections of Some Classical Inequalities. Springer Berlin Heidelberg, 1970. doi:

10.1007/978-3-642-86712-5.
[16] J. Todd, “The Condition Number of the Finite Segment of the Hilbert Matrix,” Washington, U. S.

Govt. Print. Off., Contributions to the solution of systems of linear equations and the determination
of eigenvalues. O. Taussky, Ed., pp. 109–116, 1954.

[17] G. Fischer, Lehrbuch der Algebra, Mit lebendigen Beispielen, ausführlichen Erläuterungen und
zahlreichen Bildern. Springer Spektrum, 2017, isbn: 9783658193652.

[18] S. Arora and B. Barak, Computational Complexity A Modern Approach - Internet Draft, A Modern
Approach. 2007. [Online]. Available: https://theory.cs.princeton.edu/complexity/book.pdf.

[19] M. Homeister, Quantum Computing verstehen. Springer Fachmedien Wiesbaden, 2018. doi: 10.
1007/978-3-658-22884-2.

[20] P. Kaye and M. Mosca, “Quantum Networks for Generating Arbitrary Quantum States,” Phillip
Kaye, Michele Mosca, ”Quantum Networks for Generating Arbitrary Quantum States”, Proceedings,
International Conference on Quantum Information (ICQI). Rochester, New York, USA, 2001,
Jul. 14, 2004. arXiv: quant-ph/0407102 [quant-ph].

[21] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum
states using uniformly controlled rotations,” Quant. Inf. Comp. 5, 467 (2005), Jul. 1, 2004. arXiv:
quant-ph/0407010 [quant-ph].

[22] D. Aharonov and A. Ta-Shma, “Adiabatic Quantum State Generation and Statistical Zero Knowl-
edge,” 2003. doi: https://doi.org/10.48550/arXiv.quant-ph/0301023.

73

https://doi.org/10.1017/9781316995433
https://doi.org/10.1007/978-3-662-55407-4
https://doi.org/10.1007/978-3-662-55407-4
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/1712.06239
https://doi.org/10.48550/ARXIV.2111.00405
https://doi.org/10.48550/ARXIV.2111.00405
https://doi.org/10.1007/978-3-030-12358-1
https://doi.org/10.1007/978-3-662-61645-1
https://doi.org/10.1007/978-3-662-61645-1
https://arxiv.org/abs/1802.08227
https://doi.org/10.1007/978-3-662-63639-8
https://doi.org/10.1007/978-3-662-63639-8
https://doi.org/10.2307/2975779
https://doi.org/10.1007/978-3-642-86712-5
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1007/978-3-658-22884-2
https://doi.org/10.1007/978-3-658-22884-2
https://arxiv.org/abs/quant-ph/0407102
https://arxiv.org/abs/quant-ph/0407010
https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/0301023

[23] L. Grover and T. Rudolph, “Creating superpositions that correspond to efficiently integrable prob-
ability distributions,” Aug. 15, 2002. arXiv: quant-ph/0208112 [quant-ph].

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry. Springer
Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-77974-2.

[25] B. Parhami and M. McKeown, “Arithmetic with binary-encoded balanced ternary numbers,” Nov.
2013. doi: 10.1109/acssc.2013.6810470.

[26] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown, and F. T. Chong, “Asymptotic
Improvements to Quantum Circuits via Qutrits,” May 24, 2019. doi: 10.1145/3307650.3322253.
arXiv: 1905.10481 [quant-ph].

[27] D. J. Griffiths, Introduction to Electrodynamics. Cambridge University Press, isbn: 9781108420419.
[28] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum Amplitude Amplification and Estima-

tion,” Quantum Computation and Quantum Information, Samuel J. Lomonaco, Jr. (editor), AMS
Contemporary Mathematics, 305:53-74, 2002, May 15, 2000. doi: 10.1090/conm/305/05215.
arXiv: quant-ph/0005055 [quant-ph].

[29] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight Bounds on Quantum Searching,” Fortschritte
der Physik, vol. 46, no. 4-5, pp. 493–505, Jun. 1998. doi: 10.1002/(sici)1521-3978(199806)46:
4/5<493::aid-prop493>3.0.co;2-p.

[30] D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation with nearly optimal depen-
dence on all parameters,” Proceedings of the 56th IEEE Symposium on Foundations of Computer
Science (FOCS 2015), pp. 792-809 (2015), Jan. 8, 2015. doi: 10.1109/FOCS.2015.54. arXiv:
1501.01715 [quant-ph].

[31] Q. Zhao, Y. Zhou, A. F. Shaw, T. Li, and A. M. Childs, “Hamiltonian simulation with random
inputs,” Nov. 8, 2021. arXiv: 2111.04773 [quant-ph].

[32] Y. Cao et al., “Quantum Chemistry in the Age of Quantum Computing,” Chemical Reviews,
vol. 119, no. 19, pp. 10 856–10 915, Aug. 2019. doi: 10.1021/acs.chemrev.8b00803.

[33] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quantum algorithms for simulating
sparse Hamiltonians,” Communications in Mathematical Physics 270, 359 (2007), Aug. 18, 2005.
doi: 10.1007/s00220-006-0150-x. arXiv: quant-ph/0508139 [quant-ph].

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The MIT
Press, 2009, isbn: 9780262033848.

[35] M. Suzuki, “Fractal decomposition of exponential operators with applications to many-body theo-
ries and Monte Carlo simulations,” Physics Letters A, vol. 146, no. 6, pp. 319–323, Jun. 1990. doi:
10.1016/0375-9601(90)90962-n.

[36] S. J. Richard, An Introduction to the conjugate gradient method without the agonizing pain, 1994.
doi: 10.1.1.110.418.

[37] K. Königsberger, Analysis 1. Springer, 2003, isbn: 978-3-540-40371-5.
[38] O. Forster, Analysis 1. Springer Fachmedien Wiesbaden, 2016. doi: 10.1007/978-3-658-11545-6.
[39] Aigner, Diskrete Mathematik. Vieweg, 2006. doi: 10.1007/978-3-8348-9039-9.
[40] A. M. Childs, R. Kothari, and R. D. Somma, “Quantum algorithm for systems of linear equations

with exponentially improved dependence on precision,” SIAM Journal on Computing 46, 1920-1950
(2017), Nov. 7, 2015. doi: 10.1137/16M1087072. arXiv: 1511.02306 [quant-ph].

[41] V. Kasirajan, Fundamentals of Quantum Computing. Springer International Publishing, 2021. doi:
10.1007/978-3-030-63689-0.

[42] Y. Lee, J. Joo, and S. Lee, “Hybrid quantum linear equation algorithm and its experimental test
on IBM Quantum Experience,” Scientific Reports, vol. 9, no. 1, Mar. 2019. doi: 10.1038/s41598-
019-41324-9. arXiv: 1807.10651 [quant-ph].

[43] Y. Cao, A. Daskin, S. Frankel, and S. Kais, “Quantum Circuit Design for Solving Linear Systems of
Equations,” Oct. 10, 2011. doi: 10.1080/00268976.2012.668289. arXiv: 1110.2232 [quant-ph].

74

https://arxiv.org/abs/quant-ph/0208112
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1109/acssc.2013.6810470
https://doi.org/10.1145/3307650.3322253
https://arxiv.org/abs/1905.10481
https://doi.org/10.1090/conm/305/05215
https://arxiv.org/abs/quant-ph/0005055
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1109/FOCS.2015.54
https://arxiv.org/abs/1501.01715
https://arxiv.org/abs/2111.04773
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1007/s00220-006-0150-x
https://arxiv.org/abs/quant-ph/0508139
https://doi.org/10.1016/0375-9601(90)90962-n
https://doi.org/10.1.1.110.418
https://doi.org/10.1007/978-3-658-11545-6
https://doi.org/10.1007/978-3-8348-9039-9
https://doi.org/10.1137/16M1087072
https://arxiv.org/abs/1511.02306
https://doi.org/10.1007/978-3-030-63689-0
https://doi.org/10.1038/s41598-019-41324-9
https://doi.org/10.1038/s41598-019-41324-9
https://arxiv.org/abs/1807.10651
https://doi.org/10.1080/00268976.2012.668289
https://arxiv.org/abs/1110.2232

[44] A. M. Childs and R. Kothari, “Simulating sparse Hamiltonians with star decompositions,” The-
ory of Quantum Computation, Communication, and Cryptography (TQC 2010), Lecture Notes in
Computer Science 6519, pp. 94-103 (2011), pp. 94–103, Mar. 18, 2010. doi: 10.1007/978-3-642-
18073-6_8. arXiv: 1003.3683 [quant-ph].

[45] S. K. Leyton and T. J. Osborne, “A quantum algorithm to solve nonlinear differential equations,”
Dec. 23, 2008. arXiv: 0812.4423 [quant-ph].

[46] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, “Variational Quantum
Linear Solver,” Sep. 12, 2019. arXiv: 1909.05820 [quant-ph].

[47] A. Ambainis, “Variable time amplitude amplification and a faster quantum algorithm for solving
systems of linear equations,” 2010. doi: 10.48550/ARXIV.1010.4458.

[48] M. Dworkin et al., “Advanced Encryption Standard (AES),” Federal Inf. Process. Stds. (NIST
FIPS), National Institute of Standards and Technology, Gaithersburg, MD, Nov. 26, 2001. doi:
https://doi.org/10.6028/NIST.FIPS.197.

[49] J. Daemen and V. Rijmen, The Design of Rijndael. Springer Berlin Heidelberg, 2020. doi: 10.
1007/978-3-662-60769-5.

[50] H. Nover, “Algebraic Cryptanalysis of AES: An Overview,” [Last accessed: 04.10.2022, 14:24].
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.5435.

[51] S. Murphy and M. J. B. Robshaw, “Essential Algebraic Structure within the AES,” in Advances in
Cryptology — CRYPTO 2002, Springer, Jan. 1, 2002, isbn: 978-3-540-44050-5. doi: 10.1007/3-
540-45708-9_1.

[52] C. Karpfinger and K. Meyberg, Algebra. Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-
662-54722-9.

[53] A. Kaminsky, M. Kurdziel, and S. Radziszowski, “An overview of cryptanalysis research for the
advanced encryption standard,” in 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CON-
FERENCE, IEEE, Oct. 2010. doi: 10.1109/milcom.2010.5680130.

[54] J. Gao, H. Li, B. Wang, and X. Li, “Quantum security of AES-128 under HHL algorithm,” Quantum
Information and Computation, vol. 22, pp. 209–240, Feb. 2022. doi: 10.26421/QIC22.3-4-2.

[55] N. Courtois and J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined Systems of Equa-
tions,” Cryptology ePrint Archive, Report 2002/044, 2002, https : / / ia . cr / 2002 / 044. doi:
https://doi.org/10.1007/3-540-36178-2_17.

[56] R.-H. Schulz, Codierungstheorie eine Einführung, eine Einführung. Vieweg, 2003, isbn: 978-3528164195.
[57] K. Jänich, Funktionentheorie, Eine Einführung (Springer-Lehrbuch). Springer, 2004, isbn: 9783540203926.
[58] R. Remmert and G. Schumacher, Funktionentheorie 1. Springer Berlin Heidelberg, 2002. doi:

10.1007/978-3-642-56281-5.
[59] M. Sipser, Introduction to the theory of computation. Cengage Learning, 2013, isbn: 113318779X.
[60] L. M. Adleman, J. DeMarrais, and M.-D. A. Huang, “Quantum computability,” SIAM Journal on

Computing, vol. 26, no. 5, pp. 1524–1540, Oct. 1997. doi: 10.1137/S0097539795293639.

75

https://doi.org/10.1007/978-3-642-18073-6_8
https://doi.org/10.1007/978-3-642-18073-6_8
https://arxiv.org/abs/1003.3683
https://arxiv.org/abs/0812.4423
https://arxiv.org/abs/1909.05820
https://doi.org/10.48550/ARXIV.1010.4458
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-662-60769-5
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.5435
https://doi.org/10.1007/3-540-45708-9_1
https://doi.org/10.1007/3-540-45708-9_1
https://doi.org/10.1007/978-3-662-54722-9
https://doi.org/10.1007/978-3-662-54722-9
https://doi.org/10.1109/milcom.2010.5680130
https://doi.org/10.26421/QIC22.3-4-2
https://ia.cr/2002/044
https://doi.org/https://doi.org/10.1007/3-540-36178-2_17
https://doi.org/10.1007/978-3-642-56281-5
https://doi.org/10.1137/S0097539795293639

	Introduction
	Background Knowledge in Quantum Computation
	Finite-Dimensional Hermitian Operator Theory
	Matrix Condition Number and Sparsity
	Finite Polynomial Fields

	Extensions of the Common Quantum Algorithmic Toolbox
	Auxiliary Gates
	Quantum State Generation based on Efficiently Integrable Probability Distributions
	Quantum Mechanical Metrics
	Qutrits
	Amplitude Amplification
	Quantum Phase Estimation
	Hamiltonian Simulation

	The HHL Algorithm
	Problem Description and Assumptions
	Overview
	Analysis for Well-Conditioned Matrices
	Relaxations to the Assumptions and Discussion
	Outline of Two Improvements

	Application on the Cryptanalysis of AES
	An Algebraic Description of AES
	The BES Cipher
	A BES Multivariate Equation System for AES
	Overview of Recent Research on the Approach

	Omitted Details
	Formula Sheet
	Hardness Results

