SEMINAR ON CONVEX ANALYSIS Freie Universität Berlin Summer Term 2023 valentinpi July 25, 2023

Presentation Handout on: Further Properties of Subdifferentials and The Situation in \mathbb{R}^n

Theorem 1 (A Chain Rule [1, p. 201]). Let $\Lambda \in L(X, Y)$ and $f: Y \to \mathbb{R}$ be a function.

(i) For any $x \in X$, we have

(1)
$$\partial (f\Lambda)(x) \supseteq \Lambda^* \partial f(\Lambda x)$$

- (ii) If f is convex and proper on X, as well as continuous at a point in Im(A), then for any $x \in X$
- (2)

 $\begin{array}{c} X \\ \Lambda \\ \downarrow \\ Y \\ \hline \partial f \end{array} \xrightarrow{\partial (f\Lambda)} \mathcal{P}(Y^*) \\ \hline \Lambda^* \\ \Lambda^* \end{array} \mathcal{P}(X^*)$

 $\partial(f\Lambda)(x) = \Lambda^* \partial f(\Lambda x)$

Theorem 2 (Supremum Functions [1, pp. 201-204]). Let S be a compact topological space and $f: S \times X \to \overline{\mathbb{R}}$, s.t. for any $(s, x) \in S \times X$, $f|_{\{s\} \times X}$ is convex and proper, and that $f|_{S \times \{x\}}$ is upper semicontinuous, where we each omit the respective fixed argument. Let $f_s := f|_{\{s\} \times X}$ and set

(3)
$$\hat{f}: X \to \overline{\mathbb{R}}, x \mapsto \sup_{s \in S} f_s(x) \text{ and } S_0: X \to \mathcal{P}(S), x \mapsto \{s \in S \mid f_s(x) = \hat{f}(x)\}.$$

In both of the following statements, the closures are taken wrt. the weak*-topology of X^* . (i) For any $x \in X$

(4)
$$\overline{\operatorname{conv}}\left(\bigcup_{s\in S_0(x)}\partial f_s(x)\right)\subseteq \partial \hat{f}(x)$$

(ii) If for all $s \in S$, f_s is continuous at a point $x_0 \in X$, then

(5)
$$\overline{\operatorname{conv}}\left(\bigcup_{s\in S_0(x_0)}\partial f_s(x_0)\right) = \partial \hat{f}(x_0)$$

Let $n \in \mathbb{N}_{\geq 1}$.

Theorem 3 ([1, p. 204]). Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and convex. Then f is subdifferentiable in ri(dom(f)).

Theorem 4 ([1, pp. 204-205]). Let $X, S, f, f_s, \hat{f}, S_0, x_0$ for $X = \mathbb{R}^n$ and any $s \in S$ be defined as in the setting of Theorem 2 (ii). Then every $y \in \partial \hat{f}(x_0)$ can be represented as a convex combination of form

(6)
$$y = \sum_{i=1}^{r} \alpha_i y_i$$

with $r \in \mathbb{N}$, $1 \le r \le n+1$, $\sum_{i=1}^{r} \alpha_i = 1$ and $s_i \in S_0(x_0)$, $(\alpha_i, y_i) \in \mathbb{R}_{>0} \times \partial f_{s_i}(x_0)$ for any $i \in \mathbb{N}$, $1 \le i \le r$.

References

[1] A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, ISBN: 9780444851673.