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Presentation Notes on: Further Properties of Subdifferentials and The Situation in Rn

1 Preliminaries We first recall the following notions (without the relevant properties for now) from the
previous talks. Most of the necessary related, technical theorems will be recited in dedicated boxes when
needed. From now on, assume that X and Y are separable locally convex topological vector spaces over R.

Topological Vector Spaces (TVS) [1, pp. 30-31]
Convex Sets [2, p. 45]
Convex Hulls [2, p. 162]
Kones K,KU [2, p. 45, p. 162]
Lower/Upper Semicontinuity f(x) ≥ f(x0)− ε / f(x) ≤ f(x0) + ε [2, p. 12]
Epigraphs epi(f) [2, p. 45]
Convex Functions conv(epi(f)) = epi(f) [2, p. 45]
Jensens Inequality f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) [2, p. 167]
Proper Functions −∞ < f 6= ∞ [2, p. 45]
Effective Domain dom(f) [2, p. 45]
Affine Hull aff(A) [2, p. 186]
Relative Interior ri(f) [2, p. 187]
Subgradients f(z) ≥ f(x) + 〈x∗, z − x〉 ∀ z ∈ X [2, p. 46]
Subdifferentials ∂f(·) [2, p. 46]
Conjugates f∗ [2, pp. 171-172]
Directional Derivatives f ′(·; ·) [2, p. 193]

We denote the space of continuous linear operators between them as L(X,Y ) and the dual spaces as X∗, Y ∗.
Recall that we equip these dual spaces with their respective weak∗ topologies, giving especially that any
continuous functional in the bi-dual X∗∗ and analogously Y ∗∗ is of form x̂ : X∗ → R, x∗ 7→ x̂(x∗) := x∗(x)
for an x ∈ X [3, pp. 439-440]. Let further n ∈ N≥1 and f : X → R = R ∪ {±∞}, where the closure of
R is taken in the canonical topology after extension by ±∞. Also note the convention of expressing the
subgradient as above [4, p. 214]. To test it out one can quickly verify that f ∈ {±∞} is subdifferentiable
everywhere. Furthermore, note that we will not cite every theorem we use directly here, but we will give
references at selected positions. Especially, we want to highlight the following characterizations, which we
will use more-or-less implicitly throughout.
Theorem 1.1 ([2, pp. 170-171]). Let f be proper and convex. Then the following statements are equivalent.
(i) f is bounded on a neighborhood of x ∈ X.
(ii) f is continuous at x.
Theorem 1.2 ([2, pp. 193-199]). Let f be convex. Then the following statements are equivalent.
(i) x∗ ∈ ∂f(x).
(ii) f(z) ≥ f(x) + 〈x∗, z − x〉 ∀ z ∈ X.
(iii) f(x) + f∗(x∗) = 〈x∗, x〉
(iv) f ′(x, y) = supx∗∈∂f(x)〈x∗, y〉 ≥ 〈x∗, y〉 ∀ y ∈ X, i.e. x∗ ∈ ∂f ′(x; 0) = ∂f(x) = dom(f ′(x; ·)∗), if f is
additionally proper.
We may remark especially the rather surprising/fascinating statement in Theorem 1.2 (iv). It can be proven
by showing that f ′(x; ·) supports precisely this set [2, p. 192, p. 196], but is not clear from the definitions.
We will also use the following fact about the directional derivative.
Theorem 1.3 (Infimum Form [2, pp. 194-195]). Let f be proper and convex. Then f ′(x; ·) is well defined
for any x ∈ dom(f), convex, proper and for any y ∈ X

f ′(x; y) = inf
λ∈R>0

f(x+ λy)− f(x)

λ
(1.1)
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2 A Chain Rule Recall the chain rule from univariate differential calculus, which is of form (f ◦ g)′ =
g′ · (f ′ ◦ g). Similar statements can be made for the subdifferential of a function with a concatenated
continuous linear operator, as the following theorem establishes.

Theorem 2.1 ([2, p. 201]). Let Λ ∈ L(X,Y ) and f : Y → R be a function.
(i) For any x ∈ X, we have

∂(fΛ)(x) ⊇ Λ∗∂f(Λx)(2.2)

(ii) If f is convex and proper on X, as well as continuous at a point in Im(Λ), then for any x ∈ X

∂(fΛ)(x) = Λ∗∂f(Λx)(2.3)

X

Y P(Y ∗) P(X∗)

Λ

∂f Λ∗

∂(fΛ)

Proof. (i) Fix an x ∈ X and let x∗ ∈ Λ∗∂f(Λx). Then ∃ y∗ ∈ ∂f(Λx), s.t. x∗ = Λ∗y∗ = y∗Λ. Then y∗

fulfills by definition
f(z′) ≥ f(Λx) + 〈y∗, z′ − Λx〉(2.4)

for any z′ ∈ Y . As Im(Λ) ⊂ Y , we may assume z′ = Λz for a z ∈ X and obtain
(fΛ)(z) ≥ (fΛ)(x) + 〈y∗,Λ(z − x)〉 = (fΛ)(x) + 〈x∗, z − x〉(2.5)

by the notation used.1
(ii) If (fΛ)(x) = ∞, then ∂(fΛ)(x) = ∅, giving with (i) the equality. Denote now the point at which f is
continuous as Λx̄, x̄ ∈ X and additionally fix an x ∈ X. First, we show that f ′(Λx; ·) is continuous at a
point in Im(Λ) (a). In the second step, we use a rule on interchanging conjugates with adjoints to directly
obtain the statement (b).
(a) The argument requires the following theorem.

Theorem 2.2 ([2, pp. 195-196]). Let f : X → R be a proper, convex function, which is continuous
on ∅ 6= U ⊆ X and x ∈ X be fixed.
(i) If |f ′(x; x̄)| < ∞ for x̄ ∈ X with x+ x̄ ∈ U , then f ′(x; ·) is continuous on KU−{x} \ {0}a.
(ii) If f is continuous at x, then f ′(x; ·) is finite and continuous on X.
aThe minus sign − here denotes the algebraic difference of sets.

0

x

x̄

KU

x+ x̄ ∈ U
f ′(x; x̄)

X

Figure 1. Illustration of the situation in Theorem 2.2.

1The full calculation reads ⟨y∗,Λ(z − x)⟩ = (y∗Λ)(z − x) = (Λ∗y∗)(z − x) = ⟨x∗, z − x⟩.
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Consider that f is continuous in {Λx̄ = Λx+ Λ(x̄− x)} and use the bound

f ′(Λx; Λ(x̄− x)) = lim
λ↓0

f(Λx+ λΛ(x̄− x))− f(Λx)

λ
(2.6)

≤ lim
λ↓0

(1− λ)f(Λx) + λf(Λx̄)− f(Λx)

λ
= f(Λx̄)− f(Λx)

(1); |f ′(Λx; Λ(x̄− x))| < ∞(2.7)

(1) Since f is convex and continuous at Λx̄, it is finite there.
By Theorem 2.2 (i), f ′(Λx; ·) is continuous on K{Λx̄}−{Λx} \ {0}. If x̄ 6= x, then we are done. Otherwise, as
f is continuous at Λx, thus by Theorem 2.2 (ii), f ′(Λx; ·) is continuous everywhere, especially at a point of
Im(Λ).
(b) Consider first the following adjoint rule.

Theorem 2.3 ([2, p. 179, p. 183]). Let Λ ∈ L(X,Y ) and f : Y → R be a convex function, continuous
at a point in Im(Λ). Then (fΛ)∗ = Λ∗f∗ and for each x∗ ∈ dom((fΛ)∗), there is a y∗ ∈ Y ∗ with
x∗ = Λ∗y∗ and (fΛ)∗(x∗) = f∗(y∗).

The statement is now given by the following calculation.

∂(fΛ)(x)
(1)
= ∂(f ′(Λx; ·)Λ)(0) (2)

= Λ∗∂f ′(Λx; 0) = Λ∗∂f(Λx)(2.8)

(1) Recall the equivalent definition ∂(fΛ)(x) = ∂(fΛ)′(x; 0) = {x∗ ∈ X∗ | (fΛ)′(x; y) ≥ 〈x∗, y〉 ∀ y ∈ X} for
subdifferentials at a point. Then use the fact that (fΛ)′(x; z) = f ′(Λx; Λz) for x, z ∈ X by

(fΛ)′(x; z) = lim
λ↓0

λ−1((fΛ)(x+ λz)− (fΛ)(x)) = lim
λ↓0

λ−1(f(Λx+ λΛz)− f(Λx)) = f ′(Λx; Λz)(2.9)

(2) We show both directions of the set equality.
(⊆) Recall that f ′(Λx; ·) is convex, and that x∗ ∈ ∂(f ′(Λx; ·)Λ)(0) means x∗ ∈ dom((f ′(Λx; ·)Λ)∗). Applying
Theorem 2.3 then gives a y∗ ∈ Y ∗ with x∗ = Λ∗y∗ and (f ′(Λx; ·)Λ)∗(x∗) = f ′(Λx; ·)∗(y∗). For the direction,
it suffices to prove that y∗ ∈ ∂f ′(Λx; 0) = ∂f(Λx). By the characterization of subgradients for convex
functions, it further suffices to prove f ′(Λx; Λx) + (f ′(Λx; ·))∗(y∗) = 〈y∗,Λx〉. But we have

〈y∗,Λx〉 = 〈x∗, x〉 = f ′(Λx; Λx) + (f ′(Λx; ·)Λ)∗(x∗) = f ′(Λx; Λx) + f ′(Λx; ·)∗(y∗)(2.10)

Reversing the steps then gives the argument.
(⊇) Let Λ∗y∗ ∈ Λ∗∂f ′(Λx; 0) for a y∗ ∈ Y ∗ and let x′ ∈ X be arbitrary. Then we have

(f ′(Λx; ·)Λ)(x′) = f ′(Λx; Λx′) ≥ 〈y∗,Λx′〉 = 〈Λ∗y∗, x′〉(2.11)

so Λ∗y∗ ∈ ∂(f ′(Λx; ·)Λ)(0).
■

Remark 2.4. Note that the statement from [2, p. 201] misses the fact that f needs to at least be proper. If f
is not proper, i.e. −∞ ∈ Im(f) or f = ∞, and assuming that we have defined the subdifferential analogously
for arbitrary functions of form X → R, then we can distinguish three cases.
(i) Suppose f = −∞. Then ∂(fΛ)(x) = X∗, but Λ∗∂f(Λx) = Im(Λ∗). Unless Λ∗ is an epimorphism, the
equality does not hold.
(ii) Now suppose −∞ ∈ Im(f) and that there is a point x′ ∈ X with f(x′) > −∞. Then ∂f(x′) = ∅ and
∂f(x−∞) = X∗ generally for any x−∞ ∈ f−1({−∞}). Note that we let x′ and x−∞ be loose. We shall skip
a full characterization of this case depending on Im(Λ) here.
(iii) For f = ∞, we apply the same argument as in (i).

3 Supremum Functions We look at descriptions of the subderivative of a supremum function over a
family of convex functions.

Lemma 3.1. Let {fs : X → R}s∈S , with S an index set, be a family of convex functions and f̂ : X → R, x 7→
sups∈S f(x). Then f̂ is convex.
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Proof. Consider

epi(f̂) =
{
(α, x) ∈ R×X | α ≥ f̂(x) = sup

s∈S
fs(x)

}
(3.12)

=
∩
s∈S

{(α, x) ∈ R×X | α ≥ fs(x)} =
∩
s∈S

epi(fs)(3.13)

Arbitrary cuts of convex sets are convex due to the fact that if two points are contained in all convex sets,
the line between them is also contained, so f̂ is convex. ■

0

R
4

4 X

fs

...

f̂

Figure 2. Illustration of the proof argument for Lemma 3.1 by a sequence of parabolas.
Consider for this case S = [0, 4] = X and for any s ∈ S the function fs to be the parabola
obtained by Lagrange Interpolation on the points {(0, 4), (2, s), (4, 4)}.

Theorem 3.2 ([2, pp. 201-204]). Let S be a compact topological space and f : S × X → R, s.t. for any
(s, x) ∈ S × X, f |{s}×X is convex and proper, and that f |S×{x} is upper semicontinuous, where we each
omit the respective fixed argument. Let fs := f |{s}×X and set

f̂ : X → R, x 7→ sup
s∈S

fs(x) and S0 : X → P(S), x 7→ {s ∈ S | fs(x) = f̂(x)}.(3.14)

In both of the following statements, the closures are taken wrt. the weak∗-topology of X∗.
(i) For any x ∈ X

conv

 ∪
s∈S0(x)

∂fs(x)

 ⊆ ∂f̂(x)(3.15)

(ii) If for all s ∈ S, fs is continuous at a point x0 ∈ X, then

conv

 ∪
s∈S0(x0)

∂fs(x0)

 = ∂f̂(x0)(3.16)

Proof. (i) Apply Lemma 3.1 to f̂ to conclude its convexity. For x ∈ X and s ∈ S0(x), we have fs(x) = f̂(x)

and ∂fs(x) ⊆ ∂f̂(x), as for any x∗ ∈ ∂fs(x) and z ∈ X

f̂(x) + 〈x∗, z − x〉 = fs(x) + 〈x∗, z − x〉 ≤ fs(z) ≤ f̂(z)(3.17)

Since s was arbitrary,
∪

s∈S0(x)
∂fs(x) ⊆ ∂f̂(x). Since ∂f̂(x) is convex and weak∗-closed [2, p. 198], we have

conv

 ∪
s∈S0(x)

∂fs(x)

 ⊆ ∂f̂(x)(3.18)

which was the claim.
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X∗

0

x∗
1 ∈ fs1(x)

x∗
2

x∗
3x∗

4

∂fs1(x)

∂fs2(x)

∂fs3(x)

∂fs4(x)

∂f(x)

Figure 3. Illustration of the statement in Theorem 3.2 on an example of a 4-point space
S and triangle-formed subdifferentials.

(ii) Our overall strategy is a proof of equality by contradiction. We first prove the existence of a set-separating
functional (a), then we use a separation theorem to obtain a point x ∈ X with a useful property (b) and
then we argue that we can wlog. assume f̂(x0 + x) < ∞ (c). Lastly, we prove, that the first assumption
violates the upper semicontinuity of fS×{x0} (d).

Theorem 3.3 ([2, pp. 164-165]). Let A ⊆ X be closed, convex and let x /∈ A. Then there exists a
functional x∗ ∈ X∗, s.t. 〈x∗, y〉 ≤ 〈x∗, x〉 − ε for a fixed ε ∈ R>0 and any y ∈ A, strongly separating
A and {x}.

(a) Consider, that
• for all s ∈ S, ∂fs(x0) 6= ∅ by [2, p. 199], as the functions are continuous there, and
• S0(x0) 6= ∅, as by Weierstrass [2, p. 13], f |S×{x0} attains a maximum fs(x0) for some s ∈ S.
The latter may not be true for any x ∈ X, it is only true since every fs, s ∈ S, is finite at x0. Set
Q := conv(

∪
s∈S0(x0)

∂fs(x0)). By the preceding argument we have Q 6= ∅. Thus, we can suppose Q 6= ∂f̂(x0)

and let x∗ ∈ ∂f̂(x0) \Q.
(b) Q is convex and closed, and x∗ /∈ Q. Theorem 3.3 gives the existence of some x̂ ∈ X∗∗ and ε ∈ R>0, s.t.
as discussed in the preliminaries in Section 1, an x ∈ X fulfills

x̂(x∗) = x∗(x) = 〈x∗, x〉 ≥ sup
z∗∈Q

〈z∗, x〉+ ε(3.19)

(c) Note that scaling by a constant does not change the separation criterion for x. So we may find such a
constant. Since the functions f |{s}×X for a s ∈ S are continuous in x0, as well as proper and convex, they
are especially finite there, and thus x0 ∈ dom(f̂). The goal is first to prove that there is some λ ∈ R>0, s.t.
f̂(x0 + λx) < ∞, s.t. replacing x by λx gives f̂(x0), f̂(x0 + x) < ∞.
We proceed in a couple of steps. Let ε′ ∈ R>0.
• For every s ∈ S, there is a λs ∈ R>0 with fs(x0+λsx) ≤ fs(x0)+ε′ by continuity of fs and by the seminorm
structure of locally convex TVS [3, p. 426], more exactly by the fact that there is a null environment basis
element that is circular.
• Fix an s ∈ S. f |S×{x0+λsx} is upper semicontinuous, so there is an open neighborhood s ∈ Us ⊆ S with
fs′(x0 + λsx) ≤ fs(x0 + λsx) + ε′ ≤ fs(x0) + 2ε′ for any s′ ∈ Us.
• {Us}s∈S is thus an open cover of S. By compactness, there are s1, ..., sm ∈ S for m ∈ N≥1, s.t.
{Us1 , ..., Usm} covers S. Choosing λ := min{λs1 , ..., λsm} > 0 gives fs(x0 + λx) ≤ f̂(x0) + 2ε′ for any
s ∈ S, which is the desired finiteness result.
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Replace now for everything following, as announced, x with λx. As f̂ is convex, we can further directly
conclude f̂(x0+ tx) ≤ (1− t)f̂(x0)+ tf̂(x0+x) < ∞ for any t ∈ [0, 1] by Jensens Inequality. In other words,
x0 + [0, 1]x ⊆ dom(f̂).
(d) At last, we proceed with the main contradiction, which is again divided up into multiple steps.
1. We claim limt→0 f̂(x0 + tx) = f̂(x0). (≤) Let s0 ∈ S0(x0). We then have for any t ∈ [0, 1], that
fs0(x0+ tx) ≤ f̂(x0+ tx). Taking the limit, as f |{s0}×X is continuous in x0, gives f̂(x0) ≤ limt→0 f̂(x0+ tx).
(≥) Use for a fixed t ∈ [0, 1] Jensens Inequality to obtain f̂(x0 + tx) ≤ (1− t)f̂(x0) + tf̂(x0 + x). Taking the
limit gives limt→0 f̂(x0 + tx) ≤ f̂(x0). The sandwich rule of limit calculus now gives the statement.
2. Let t ∈ (0, 1) be fixed and choose st ∈ S with fst(x0 + tx) = f̂(x0 + tx). By Jensens inequality

f̂(x0 + tx) = fst(x0 + tx) ≤ (1− t)fst(x0) + tfst(x0 + x)(3.20)

Since fst(x0 + x) ≤ f̂(x0 + x) < ∞, we thus get
f̂(x0 + tx)− tf̂(x0 + x) ≤ (1− t)fst(x0)(3.21)

Taking the limit t → 0 and using limt→0 f̂(x0 + tx) = f̂(x0) from the argument in 1., as well as the product
rule from limit calculus on the right side, we obtain f̂(x0) ≤ limt→0 fst(x0). limt→0 fst(x0) ≤ f̂(x0) follows
directly by the monotonicity of limits. So limt→0 fst(x0) = f̂(x0) by the sandwhich rule of limit calculus.
3. Let s0 ∈ S be a cluster point of {st}t∈(0,1), which we recall exists, due to S being compact and {st}t∈(0,1)

being infinite [2, p. 12]. f |S×{x0} is upper semicontinuous, so consider for any ε′ an open neighborhood
Uε′ ⊆ S of S0 with fs(x0) ≤ fs0(x0) + ε′ for any s ∈ Uε′ . As s0 is a cluster point, there is some st with
t ∈ [0, 1] with st ∈ Uε′ . Using this fact now with any monotonically decreasing null sequence (ε′n ∈ R≥0)n∈N,
we obtain limt→0 fst(x0) = f̂(x0) ≤ fs0(x0) ≤ f̂(x0), where the latter inequality follows from the definitions.
This gives the claimed equality by transitivity. Especially, s0 ∈ S0(x0), so ∂fs0(x0) ⊆ Q.
4. We have the inequalities

fst(x0 + tx)− fst(x0)

t
≥ f̂(x0 + tx)− f̂(x0)

t
(3.22)

≥ f̂ ′(x0;x) ≥ 〈x∗, x〉 ≥ sup
z∗∈∂fs0 (x0)⊆Q

〈z∗, x〉+ ε = f ′
s0(x0;x) + ε(3.23)

; fst(x0 + tx) ≥ fst(x0) + t(f ′
s0(x0;x) + ε)(3.24)

and
fs0(x0 + t1x)− fs0(x0)

t1
≤ f ′

s0(x0;x) +
ε

2
(3.25)

with a sufficient choice of t1, using the limit in the definition of the directional derivative. For any t ∈ (0, t1),
we now have with Jensens Inequality(

1− t

t1

)
fst(x0) +

t

t1
fst(x0 + t1x) ≥ fst

((
1− t

t1

)
x0 +

t

t1
(x0 + t1x)

)
(3.26)

= fst(x0 + tx) ≥ fst(x0) + t(f ′
s0(x0;x) + 2 · ε/2)(3.27)

≥ fst(x0) + t

(
fs0(x0 + t1x)− fs0(x0)

t1
+

ε

2

)
(3.28)

Dividing both sides by t/t1 and reordering after fst(x0), we have
fst(x0 + t1x) ≥ fst(x0 + t1x) + εt1/2(3.29)

Letting t → 0, we thus have with 3., where we observe that the argument can be repeated with x0 + t1x
analogously, that

lim
t→0

fst(x0 + t1x) ≥ fs0(x0 + t1x) + εt1/2(3.30)

contradicting the upper semicontinuity of f |S×{x0+t1x} �.
■

Remark 3.4. Some remarks about this version of the proof, especially in comparison with the book.
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(i) We have additionally assumed that fs is proper for any s ∈ S, as the use of [2, p. 199] requires that.
(ii) In part (c) of the proof, we defined Us differently by taking neighborhoods directly from the definition
of upper semicontinuity. In [2, pp. 201-204], the sets {s′ ∈ S | f(s′, x0+λsx) < f̂(x0)+2}, claimed as being
open, were used, leading to the same conclusion however.
(iii) Further, the use of the partial subdifferential notation has been omitted here, instead fs was used
directly [2, p. 47].
(iv) As a personal note, the TVS X cannot have discrete topology, as the field is R [3, p. 426].

4 Situation in Rn Let n ∈ N≥1 be fixed for the following.

Subdifferentiability in Finite Dimensions We first consider the existence of subdifferentials in finite
dimensions.

Lemma 4.1 ([2, p. 188]). Let f : Rn → R be convex and proper.
(i) f is continuous with respect to aff(dom(f)) on ri(dom(f)).
(ii) f∗ is proper.

Remark 4.2. Continuity with respect to a set is to be understood as treating the neighborhoods for continuity
as subsets of the respected set. Recall especially, that we defined the relative interior as [4, p. 44]

ri(A) = {a ∈ aff(A) | ∃ ε ∈ R>0 : B(a, ε) ∩ aff(A) ⊆ A}(4.31)

for some set A ⊆ Rn and B(a, ε) = {a′ ∈ Rn | ‖a− a′‖ℓ2 ≤ ε}.

R3

A

aff(A)

R3

ri(A)

Figure 4. Illustration of the concept of the relative interior.

Theorem 4.3 ([2, p. 204]). Let f : Rn → R be proper and convex. Then f is subdifferentiable in ri(dom(f)).

Proof. Take x ∈ ri(dom(f)). Consider the following chain of applications of proven theorems.
(1) Since f is convex and proper, Lemma 4.1 (i) gives the continuity at x with respect to aff(dom(f)).
(2) Theorem 2.2 (ii) gives the finiteness of f ′(x; ·) with respect to aff(dom(f)).
(3) f ′(x; ·) is convex and proper by that, so applying Lemma 4.1 (i) again gives, that f ′(x; ·)∗ is proper.
(4) The effective domain of f ′(x; ·)∗ is the subdifferential ∂f ′(x; 0) = ∂f(x) [2, p. 196]. Now, since f ′(x; ·)∗
is proper, ∅ 6= dom(f ′(x; ·)∗) = ∂f(x), concluding the proof.

■

Remark 4.4. In [2, p. 172], it is stated that the supremum of the Young-Fenchel transform can only be taken
for dom(f ′(x; ·)), which is false. Generally, taking it over f ′(x; ·)−1([0,∞]) suffices, which is Rn for a proper
f ′(x; ·).
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Representations of Subgradients in Finite Dimensions The next main theorem will study represen-
tations of the functionals in subdifferentials.

Lemma 4.5 ([2, pp. 185-186]). Let A ⊆ Rn be bounded and closed. Then conv(A) = conv(A).

Lemma 4.6 ([2, p. 199]). For a proper convex function f : X → R, which is continuous at a point x0, ∂f(x0)
is non-empty, weakly∗ bounded and weakly∗ compact.

Remark 4.7. Weakly∗ boundedness means that for a set A ⊆ X∗ and any weak∗ neighborhood of zero U in
X∗, there is some ε ∈ R>0 with εA ⊆ U .

Lemma 4.8. Let X,S, f, fs, f̂ , S0, x0 be defined as in the setting of Theorem 3.2 (ii). Then S0(x0) is compact.

Proof. Since S is compact, it suffices to show that S0(x0) is closed [5, p. 165]. Let s∗ ∈ S be a cluster
point of S0(x0). By upper semicontinuity, there is for any ε ∈ R>0 an open neighborhood s∗ ∈ Uε ⊆ S, s.t.
fs(x0) ≤ fs∗(x0)+ε ∀ s ∈ Uε. Since s∗ is a cluster point of S0(x0), Uε contains a point s′ ∈ (Uε\{s∗})∩S0(x0).
So f̂(x0) = fs′(x0) ≤ fs∗(x0) + ε. Since ε was chosen arbitrarily, f̂(x0) = fs∗(x0) and thus s∗ ∈ S0(x0). ■

X
[ ]( )

R

0

fs′(x0)

fs∗(x0) + ε

s′ s∗

[

Uε

Figure 5. Illustration of the argument of the proof of Lemma 4.8 using for X a closed
interval. Tightening both Uε and the gap between fs∗(x0) + ε and fs′(x0), of which the
latter is constant as f̂(x0), we obtain the statement.

Remark 4.9. The proof of Lemma 4.8 is due to Prof. Dr. Marita Thomas.

Theorem 4.10 ([2, pp. 204-205]). Let X,S, f, fs, f̂ , S0, x0 for X = Rn and any s ∈ S be defined as in the
setting of Theorem 3.2 (ii). Then every y ∈ ∂f̂(x0) can be represented as a convex combination of form

y =

r∑
i=1

αiyi(4.32)

with r ∈ N, 1 ≤ r ≤ n+ 1,
∑r

i=1 αi = 1 and si ∈ S0(x0), (αi, yi) ∈ R>0 × ∂fsi(x0) for any i ∈ N, 1 ≤ i ≤ r.

Proof. The statement corresponds to the statement, that for P :=
∪

s∈S0(x0)
∂fs(x0), P is bounded and

closed, because in that case ∂f̂(x) = conv(P ) = conv(P ) by Theorem 3.2 (ii) and Lemma 4.5, since (Rn)∗ ∼=
Rn. Because in that case, the convex combinations y =

∑r
i=1 αiyi correspond exactly to all elements of

conv(P ). It only remains to show, that P is (a) bounded and (b) closed.
(a) Using part (c) of the proof of Theorem 3.2, we find for any x ∈ X a λ ∈ R>0 with f̂(x0 + λx) < ∞. So
f̂ ′(x0; ·) is finite, since f̂ ′(x0;x) = infλ′∈R>0(f̂(x0 + λ′x)− f̂(x0))/λ

′ ≤ (f̂(x0 + λx)− f̂(x0))/λ < ∞, where
we also used, that f̂ is convex and proper. f̂ ′(x0; ·) is thus convex and proper and applying Lemma 4.1
(i) gives, that it is continuous, as dom(f ′(x0; ·)) = Rn. By that, f̂ must be continuous in x0, as it would
otherwise be unbounded in a neighborhood there and f ′(x0; ·) would thus not be continuous. Lemma 4.6
gives the weakly∗ boundedness of ∂f̂(x0) ⊇ P , thus also of P .
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(b) Let (zn ∈ P )n∈N≥1
, s.t. zn → z ∈ Rn. Denote accordingly zk ∈ ∂fsk(x0) with sk ∈ S0(x0) for every

k ∈ N≥1. As S0(x0) is compact by Lemma 4.8, (sk)k∈N≥1
has a cluster point s0 ∈ S0(x0) by sequential

compactness [5, pp. 179-180]. With the upper semicontinuity of f̂ , we thus have for any x ∈ Rn

fs0(x)− fs0(x0)
(1)

≥ fs0(x)− f̂(x0)
(2)

≥ lim sup
k→∞

fsk(x)− f̂(x0)(4.33)

(1)
= lim sup

k→∞
fsk(x)− fsk(x0) ≥ lim

k→∞
〈zk, x− x0〉 = 〈z, x− x0〉(4.34)

(1) f̂(x0) = fs0(x0) = fsk(x0) for any k ∈ N≥1, as s0, sk ∈ S0(x0).
(2) Consider that s0 is a cluster point of {sk}k∈N≥1

and the upper semicontinuity of f |{s0}×X , as in previous
arguments.
so z ∈ ∂fs0(x0) ⊆ P , concluding the statement.

■
Remark 4.11. The choices of r and the parameters αi stem from the use of Lemma 4.5, a corollary of
Carathéodory’s Theorem.
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