Presentation Notes on: Further Properties of Subdifferentials and The Situation in \mathbb{R}^n

valentinpi

SEMINAR ON CONVEX ANALYSIS Freie Universität Berlin Summer Term 2023

July 25, 2023

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

Effective domain, epigraph of a function.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Effective domain, epigraph of a function.

Convexity of sets and functions.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

Effective domain, epigraph of a function.

Convexity of sets and functions.

f is proper, if $-\infty < f \neq \infty$.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Effective domain, epigraph of a function.

Convexity of sets and functions.

f is proper, if $-\infty < f \neq \infty$.

 $x^* \in X^*$ is a subgradient of f at $x \in X$, if $f(z-x) \ge f(x) + \langle x^*, z-x \rangle \, \forall \, z \in X$.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

Effective domain, epigraph of a function.

Convexity of sets and functions.

f is proper, if $-\infty < f \neq \infty$.

 $x^* \in X^*$ is a subgradient of f at $x \in X$, if $f(z-x) > f(x) + \langle x^*, z-x \rangle \, \forall \, z \in X$.

The set of all subgradients is the subdifferential $\partial f(x)$.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

Effective domain, epigraph of a function.

Convexity of sets and functions.

f is proper, if $-\infty < f \neq \infty$.

 $x^* \in X^*$ is a subgradient of f at $x \in X$, if $f(z-x) \ge f(x) + \langle x^*, z-x \rangle \, \forall \, z \in X$.

The set of all subgradients is the subdifferential $\partial f(x)$.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

So far: Definition, characterization, Moreau-Rockefellar.

Let X, Y be locally convex topological vector spaces, $n \in \mathbb{N}_{\geq 1}$ and $f: X \to \overline{\mathbb{R}}$. Recall:

Recall:

Effective domain, epigraph of a function.

Convexity of sets and functions.

f is proper, if $-\infty < f \neq \infty$.

 $x^* \in X^*$ is a subgradient of f at $x \in X$, if $f(z-x) \ge f(x) + \langle x^*, z-x \rangle \, \forall \, z \in X$.

The set of all subgradients is the subdifferential $\partial f(x)$.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

So far: Definition, characterization, Moreau-Rockefellar. Today: More properties, some for $X = \mathbb{R}^n$.

Recap: Important General Characterizations

Theorem 1 ([1, pp. 170-171])

Let f be proper and convex. Then the following statements are equivalent. (i) f is bounded on a neighborhood of $x \in X$. (ii) f is continuous at x.

Recap: Important General Characterizations

Theorem 2 ([1, pp. 193-199]) Let f be convex. Then the following statements are equivalent. (i) $x^* \in \partial f(x)$. (ii) $f(z) \ge f(x) + \langle x^*, z - x \rangle \forall z \in X$. (iii) $f(x) + f^*(x^*) = \langle x^*, x \rangle$ (iv) $f'(x, y) = \sup_{x^* \in \partial f(x)} \langle x^*, y \rangle \ge \langle x^*, y \rangle \forall y \in X$, i.e. $x^* \in \partial f'(x; 0) = \partial f(x) = dom(f'(x; \cdot)^*)$, if f is additionally proper.

Recap: Important General Characterizations

Theorem 3 (Infimum Form [1, pp. 194-195]) Let f be proper and convex. Then $f'(x; \cdot)$ is well defined for any $x \in dom(f)$, convex, proper and for any $y \in X$

$$f'(x; y) = \inf_{\lambda \in \mathbb{R}_{>0}} \frac{f(x + \lambda y) - f(x)}{\lambda}$$

Theorem 4 ([1, p. 201]) Let $\Lambda \in L(X, Y)$ and f: $Y \to \overline{\mathbb{R}}$ be a function.

Theorem 4 ([1, p. 201]) Let $\Lambda \in L(X, Y)$ and f: $Y \to \overline{\mathbb{R}}$ be a function. (i) For any $x \in X$, we have

 $\partial(f\Lambda)(x) \supseteq \Lambda^* \partial f(\Lambda x)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 4 ([1, p. 201]) Let $\Lambda \in L(X, Y)$ and f: $Y \to \overline{\mathbb{R}}$ be a function. (i) For any $x \in X$, we have

$$\partial(f\Lambda)(x) \supseteq \Lambda^* \partial f(\Lambda x)$$

(ii) If f is convex and proper on X, as well as continuous at a point in $Im(\Lambda)$, then for any $x \in X$

 $\partial(f\Lambda)(x) = \Lambda^* \partial f(\Lambda x)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem 4 ([1, p. 201]) Let $\Lambda \in L(X, Y)$ and f: $Y \to \overline{\mathbb{R}}$ be a function. (i) For any $x \in X$, we have

$$\partial(f\Lambda)(x) \supseteq \Lambda^* \partial f(\Lambda x)$$

(ii) If f is convex and proper on X, as well as continuous at a point in $Im(\Lambda)$, then for any $x \in X$

$$\partial(f\Lambda)(x) = \Lambda^* \partial f(\Lambda x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Chain Rule: Helper Theorems

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

A Chain Rule: Helper Theorems

Theorem 5 ([1, pp. 195-196]) Let $f: X \to \overline{\mathbb{R}}$ be a proper, convex function, which is continuous on $\emptyset \neq U \subseteq X$ and $x \in X$ be fixed. (i) If $|f(x; \overline{x})| < \infty$ for $\overline{x} \in X$ with $x + \overline{x} \in U$, then $f'(x; \cdot)$ is continuous on $K_{U \setminus \{x\}} \setminus \{0\}$ or $K_{U \setminus \{x\}}$.

(ii) If f is continuous at x, then $f(x; \cdot)$ is finite and continuous on X.

A Chain Rule: Helper Theorems

Theorem 5 ([1, pp. 195-196]) Let $f: X \to \overline{\mathbb{R}}$ be a proper, convex function, which is continuous on $\emptyset \neq U \subseteq X$ and $x \in X$ be fixed. (i) If $|f(x; \overline{x})| < \infty$ for $\overline{x} \in X$ with $x + \overline{x} \in U$, then $f'(x; \cdot)$ is continuous on $\mathcal{K}_{U \setminus \{x\}} \setminus \{0\}$ or $\mathcal{K}_{U \setminus \{x\}}$.

(ii) If f is continuous at x, then $f(x; \cdot)$ is finite and continuous on X.

Theorem 6 ([1, p. 179, p. 183]) Let $\Lambda \in L(X, Y)$ and $f: Y \to \mathbb{R}$ be a convex function, continuous at a point in Im(Λ). Then ($f\Lambda$)* = Λ * f* and for each $x^* \in dom((f\Lambda)^*)$, there is a $y^* \in Y^*$ with $x^* = \Lambda^* y^*$ and ($f\Lambda$)*(x^*) = $f^*(y^*)$.

The Supremum Function of Convex Functions is Convex

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Supremum Function of Convex Functions is Convex

Lemma 7 Let $\{f_s: X \to \overline{\mathbb{R}}\}_{s \in S}$, with S an index set, be a family of convex functions and $\hat{f}: X \to \overline{\mathbb{R}}, x \mapsto \sup_{s \in S} f(x)$. Then \hat{f} is convex.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Theorem 8 ([1, pp. 201-204])

Let S be a compact topological space and f: $S \times X \to \overline{\mathbb{R}}$, s.t. for any $(s, x) \in S \times X$, $f|_{\{s\} \times X}$ is convex and proper, and that $f|_{S \times \{x\}}$ is upper semicontinuous. Let $f_s := f|_{\{s\} \times X}$ and set

 $\hat{f}: X \to \overline{\mathbb{R}}, x \mapsto \sup_{s \in S} f_s(x) \text{ and } S_0: X \to \mathcal{P}(S), x \mapsto \{s \in S \mid f_s(x) = \hat{f}(x)\}.$

Theorem 8 ([1, pp. 201-204])

Let S be a compact topological space and f: $S \times X \to \overline{\mathbb{R}}$, s.t. for any $(s, x) \in S \times X$, $f|_{\{s\} \times X}$ is convex and proper, and that $f|_{S \times \{x\}}$ is upper semicontinuous. Let $f_s := f|_{\{s\} \times X}$ and set

 $\hat{f}: X \to \overline{\mathbb{R}}, x \mapsto \sup_{s \in S} f_s(x) \text{ and } S_0: X \to \mathcal{P}(S), x \mapsto \{s \in S \mid f_s(x) = \hat{f}(x)\}.$

(i) For any $x \in X$

$$\overline{conv}\left(\bigcup_{s\in S_0(x)}\partial f_s(x)\right)\subseteq \partial \hat{f}(x)$$

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

Theorem 8 ([1, pp. 201-204])

Let S be a compact topological space and f: $S \times X \to \overline{\mathbb{R}}$, s.t. for any $(s, x) \in S \times X$, $f|_{\{s\} \times X}$ is convex and proper, and that $f|_{S \times \{x\}}$ is upper semicontinuous. Let $f_s := f|_{\{s\} \times X}$ and set

 $\hat{f}: X \to \overline{\mathbb{R}}, x \mapsto \sup_{s \in S} f_s(x) \text{ and } S_0: X \to \mathcal{P}(S), x \mapsto \{s \in S \mid f_s(x) = \hat{f}(x)\}.$

(i) For any
$$x \in X$$

$$\overline{conv}\left(\bigcup_{s \in S_0(x)} \partial f_s(x)\right) \subseteq \hat{\partial f}(x)$$

(ii) If for all $s \in S$, f_s is continuous at a point $x_0 \in X$, then

$$\overline{conv}\left(\bigcup_{s\in S_0(x_0)}\partial f_s(x_0)\right) = \partial \hat{f}(x_0)$$

Supremum Function Subdifferential: Helper Separation Theorem

Supremum Function Subdifferential: Helper Separation Theorem

Theorem 9 ([1, pp. 164-165]) Let $A \subseteq X$ be closed, convex and let $x \notin A$. Then there exists a functional $x^* \in X^*$, s.t. $\langle x^*, y \rangle \leq \langle x^*, x \rangle - \varepsilon$ for a fixed $\varepsilon \in \mathbb{R}_{>0}$ and any $y \in A$, strongly separating A and $\{x\}$.

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Theorem 10 ([1, p. 204])

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and convex. Then f is subdifferentiable in ri(dom(f)).

Theorem 10 ([1, p. 204]) Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and convex. Then f is subdifferentiable in ri(dom(f)).

One helper theorem is needed.

Theorem 10 ([1, p. 204]) Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and convex. Then f is subdifferentiable in ri(dom(f)).

One helper theorem is needed.

Lemma 11 ([1, p. 188]) Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and proper. (i) f is continuous with respect to aff(dom(f)) on ri(dom(f)). (ii) f^{*} is proper.

Subdifferentials in \mathbb{R}^n : Representation

Subdifferentials in \mathbb{R}^n : Representation

Theorem 12 ([1, pp. 204-205]) Let X, S, f, f_s , \hat{f} , S_0 , x_0 for $X = \mathbb{R}^n$ and any $s \in S$ be defined as in the setting of Theorem 8 (ii). Then every $y \in \partial \hat{f}(x_0)$ can be represented as a convex combination of form

$$y = \sum_{i=1}^{r} \alpha_i y_i$$

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

with $r \in \mathbb{N}$, $1 \le r \le n+1$, $\sum_{i=1}^{r} \alpha_i = 1$ and $s_i \in S_0(x_0)$, $(\alpha_i, y_i) \in \mathbb{R}_{>0} \times \partial f_{s_i}(x_0)$ for any $i \in \mathbb{N}$, $1 \le i \le r$.

Subdifferentials in \mathbb{R}^n : Representation - Helper Theorems

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Subdifferentials in \mathbb{R}^n : Representation - Helper Theorems

<ロ> <同> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Lemma 13 ([1, pp. 185-186]) Let $A \subseteq \mathbb{R}^n$ be bounded and closed. Then $conv(A) = \overline{conv}(A)$. Lemma 13 ([1, pp. 185-186]) Let $A \subseteq \mathbb{R}^n$ be bounded and closed. Then $conv(A) = \overline{conv}(A)$. Lemma 14 ([1, p. 199]) For a proper convex function $f: X \to \overline{\mathbb{R}}$, which is continuous at a point x_0 , $\partial f(x_0)$ is non-empty, weakly* bounded and weakly* compact.

Lemma 13 ([1, pp. 185-186]) Let $A \subseteq \mathbb{R}^n$ be bounded and closed. Then $conv(A) = \overline{conv}(A)$. Lemma 14 ([1, p. 199]) For a proper convex function $f: X \to \overline{\mathbb{R}}$, which is continuous at a point $x_0, \partial f(x_0)$ is non-empty, weakly* bounded and weakly* compact. Lemma 15 Let X, S, f, f_s, \hat{f} , S₀, x_0 be defined as in the setting of Theorem 8 (ii). Then

Let X, S, r, f_s , r, S_0 , x_0 be defined as in the setting of Theorem 8 (ii). Then $S_0(x_0)$ is compact.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

References

[1] A.D. loffe and V.M. Tihomirov, *Theory of Extremal Problems*, ISBN: 9780444851673.

4 日 ト 4 目 ト 4 目 ト 4 目 - 9 4 (や)