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Recap

Let X,Y be locally convex topological vector spaces, n ∈ N≥1 and
f : X → R.
Recall:

Effective domain, epigraph of a function.
Convexity of sets and functions.
f is proper, if −∞ < f 6= ∞.
x∗ ∈ X∗ is a subgradient of f at x ∈ X, if
f(z − x) ≥ f(x) + 〈x∗, z − x〉 ∀ z ∈ X.
The set of all subgradients is the subdifferential ∂f(x).

So far: Definition, characterization, Moreau-Rockefellar.
Today: More properties, some for X = Rn.
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Recap: Important General Characterizations

Theorem 1 ([1, pp. 170-171])
Let f be proper and convex. Then the following statements are equivalent.
(i) f is bounded on a neighborhood of x ∈ X.
(ii) f is continuous at x.



Recap: Important General Characterizations

Theorem 2 ([1, pp. 193-199])
Let f be convex. Then the following statements are equivalent.
(i) x∗ ∈ ∂f(x).
(ii) f(z) ≥ f(x) + 〈x∗, z − x〉 ∀ z ∈ X.
(iii) f(x) + f∗(x∗) = 〈x∗, x〉
(iv) f′(x, y) = supx∗∈∂f(x)〈x∗, y〉 ≥ 〈x∗, y〉 ∀ y ∈ X, i.e. x∗ ∈ ∂f′(x; 0) =
∂f(x) = dom(f′(x; ·)∗), if f is additionally proper.



Recap: Important General Characterizations

Theorem 3 (Infimum Form [1, pp. 194-195])
Let f be proper and convex. Then f′(x; ·) is well defined for any
x ∈ dom(f), convex, proper and for any y ∈ X

f′(x; y) = inf
λ∈R>0

f(x + λy)− f(x)
λ



A Chain Rule

Theorem 4 ([1, p. 201])
Let Λ ∈ L(X,Y) and f : Y → R be a function.
(i) For any x ∈ X, we have

∂(fΛ)(x) ⊇ Λ∗∂f(Λx)

(ii) If f is convex and proper on X, as well as continuous at a point in
Im(Λ), then for any x ∈ X

∂(fΛ)(x) = Λ∗∂f(Λx)

X

Y P(Y∗) P(X∗)

Λ

∂f Λ∗

∂(fΛ)



A Chain Rule
Theorem 4 ([1, p. 201])
Let Λ ∈ L(X,Y) and f : Y → R be a function.

(i) For any x ∈ X, we have

∂(fΛ)(x) ⊇ Λ∗∂f(Λx)

(ii) If f is convex and proper on X, as well as continuous at a point in
Im(Λ), then for any x ∈ X

∂(fΛ)(x) = Λ∗∂f(Λx)

X

Y P(Y∗) P(X∗)

Λ

∂f Λ∗

∂(fΛ)



A Chain Rule
Theorem 4 ([1, p. 201])
Let Λ ∈ L(X,Y) and f : Y → R be a function.
(i) For any x ∈ X, we have

∂(fΛ)(x) ⊇ Λ∗∂f(Λx)

(ii) If f is convex and proper on X, as well as continuous at a point in
Im(Λ), then for any x ∈ X

∂(fΛ)(x) = Λ∗∂f(Λx)

X

Y P(Y∗) P(X∗)

Λ

∂f Λ∗

∂(fΛ)



A Chain Rule
Theorem 4 ([1, p. 201])
Let Λ ∈ L(X,Y) and f : Y → R be a function.
(i) For any x ∈ X, we have

∂(fΛ)(x) ⊇ Λ∗∂f(Λx)

(ii) If f is convex and proper on X, as well as continuous at a point in
Im(Λ), then for any x ∈ X

∂(fΛ)(x) = Λ∗∂f(Λx)

X

Y P(Y∗) P(X∗)

Λ

∂f Λ∗

∂(fΛ)



A Chain Rule
Theorem 4 ([1, p. 201])
Let Λ ∈ L(X,Y) and f : Y → R be a function.
(i) For any x ∈ X, we have

∂(fΛ)(x) ⊇ Λ∗∂f(Λx)

(ii) If f is convex and proper on X, as well as continuous at a point in
Im(Λ), then for any x ∈ X

∂(fΛ)(x) = Λ∗∂f(Λx)

X

Y P(Y∗) P(X∗)

Λ

∂f Λ∗

∂(fΛ)



A Chain Rule: Helper Theorems

Theorem 5 ([1, pp. 195-196])
Let f : X → R be a proper, convex function, which is continuous on
∅ 6= U ⊆ X and x ∈ X be fixed.
(i) If |f′(x; x̄)| < ∞ for x̄ ∈ X with x+ x̄ ∈ U, then f′(x; ·) is continuous on
KU\{x} \ {0} or KU\{x}.

(ii) If f is continuous at x, then f′(x; ·) is finite and continuous on X.

Theorem 6 ([1, p. 179, p. 183])
Let Λ ∈ L(X,Y) and f : Y → R be a convex function, continuous at a
point in Im(Λ). Then (fΛ)∗ = Λ∗f∗ and for each x∗ ∈ dom((fΛ)∗), there is
a y∗ ∈ Y∗ with x∗ = Λ∗y∗ and (fΛ)∗(x∗) = f∗(y∗).
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The Supremum Function of Convex Functions is Convex

Lemma 7
Let {fs : X → R}s∈S, with S an index set, be a family of convex functions
and f̂ : X → R, x 7→ sups∈S f(x). Then f̂ is convex.
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Supremum Function Subdifferential

Theorem 8 ([1, pp. 201-204])
Let S be a compact topological space and f : S × X → R, s.t. for any
(s, x) ∈ S × X, f|{s}×X is convex and proper, and that f|S×{x} is upper
semicontinuous. Let fs := f|{s}×X and set

f̂ : X → R, x 7→ sup
s∈S

fs(x) and S0 : X → P(S), x 7→ {s ∈ S | fs(x) = f̂(x)}.

(i) For any x ∈ X

conv

 ∪
s∈S0(x)

∂fs(x)

 ⊆ ∂ f̂(x)

(ii) If for all s ∈ S, fs is continuous at a point x0 ∈ X, then

conv

 ∪
s∈S0(x0)

∂fs(x0)

 = ∂ f̂(x0)
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Supremum Function Subdifferential: Helper Separation
Theorem

Theorem 9 ([1, pp. 164-165])
Let A ⊆ X be closed, convex and let x /∈ A. Then there exists a
functional x∗ ∈ X∗, s.t. 〈x∗, y〉 ≤ 〈x∗, x〉 − ε for a fixed ε ∈ R>0 and any
y ∈ A, strongly separating A and {x}.
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Subdifferentials in Rn: Existence

Theorem 10 ([1, p. 204])
Let f : Rn → R be proper and convex. Then f is subdifferentiable in
ri(dom(f)).

One helper theorem is needed.

Lemma 11 ([1, p. 188])
Let f : Rn → R be convex and proper.
(i) f is continuous with respect to aff(dom(f)) on ri(dom(f)).
(ii) f∗ is proper.
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Subdifferentials in Rn: Representation

Theorem 12 ([1, pp. 204-205])
Let X, S, f, fs, f̂, S0, x0 for X = Rn and any s ∈ S be defined as in the
setting of Theorem 8 (ii). Then every y ∈ ∂ f̂(x0) can be represented as a
convex combination of form

y =
r∑

i=1
αiyi

with r ∈ N, 1 ≤ r ≤ n + 1,
∑r

i=1 αi = 1 and si ∈ S0(x0),
(αi, yi) ∈ R>0 × ∂fsi(x0) for any i ∈ N, 1 ≤ i ≤ r.
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Subdifferentials in Rn: Representation - Helper Theorems

Lemma 13 ([1, pp. 185-186])
Let A ⊆ Rn be bounded and closed. Then conv(A) = conv(A).

Lemma 14 ([1, p. 199])
For a proper convex function f : X → R, which is continuous at a point
x0, ∂f(x0) is non-empty, weakly∗ bounded and weakly∗ compact.

Lemma 15
Let X, S, f, fs, f̂, S0, x0 be defined as in the setting of Theorem 8 (ii). Then
S0(x0) is compact.
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