valentinpi Last Change: August 16, 2023
Notes on the Finite Abelian HSP Algorithm

1 Introduction We quickly introduce the necessary notions, facts and the quantum algorithm, with
appropriate citations. Recall the finite Abelian Hidden Subgroup Problem (HSP): Given a finite Abelian
group (G,+), a subgroup H < G and some f: G — X with X an appropriate set, s.t. f|om is constant
and flga = flohg — g = h for all g,h € G. Our goal is to find a generator I' C H for H using a quantum
algorithm?!.
(i) Since the left cosets of H induce a partition of G [2, pp. 36-37], choosing X, s.t. |X| > |G/H| =
|G|/|H| [2, p- 38], e.g. via X := {0,1}" for some = € N>1, > [log,(|G/H]|)]| suffices.
(ii) How do we store group elements in G in a quantum register? We can do that using qudits, because
G = @, Zy, with k € N>y and {Ny,...,Ni} € Ny [2, pp. 132-135], where we take the direct
sum of the groups, i.e. the elements of G' can be taken to be tuples G > g == (g1, ..., gx) € H?:I Zn;
[2, pp. 53-54]. Note that we also call Ny, ..., Ny elementary divisors. We take such a decomposition
and appropriate qudits as given here?.
To formulate the quantum algorithm, an analogon for the Zy Quantum Fourier Transform for G must be
defined. This is done via characteristics.

2 Characteristics
Definition 1 ([1, p. 17]). A characteristic over G is a group homomorphism (G,+) — (C* := C\ {0}, ).

Lemma 1 ([1, p. 18]). The following statements are true.
(i) The set of characteristics of G, x(G) = {x: G — C* | x is a characteristic over G}, equipped with
the composition of maps, is a group.
(ii) The map G —» x(G),g — X4 is a group isomorphism, where we call x,: G — C*,h H?Zl w?jjﬁj
the characteristic induced by g.

3 Orthogonal Subgroups
Definition 2 ([1, p. 18]). For H C G a subgroup of a group G, we define its orthogonal subgroup as

(3.1) H* = {g€ G |xg(H)={1}}
Lemma 2 ([1, pp. 19-20]). The following statements hold.
(i) H+ <G
(i) H+ ~G/H
(i) ' = H

Note that we included statement (i) here to justify the name in the definition.

4 General Fourier Transform

Definition 3 ([1, p. 20]). We define the Quantum Fourier Transform of the Group G as

1
(4.1) QPT = 1 3 Xa(®)l)n| € 19
g,heG

For G = Zn, N € Nsj, we thus have |G| = N and x4(h) = 2% for any g,h € G, meaning that
this corresponds to the Quantum Fourier Transform QFT,. We further set |H’) := \le > hep |h) for any

subgroup H' < G. Also, we have QF T |0) = |G|~1/? >_geq |9) by definition.
Lemma 3 ([1, pp. 19-21, p. 23]). The following statements are true.
(i) QFT is unitary.

1Classically, this problem is difficult, as the prime factorization problem shows [1, p. 24].
2Finding such a decomposition is difficult, although a quantum algorithm exists [1, p. 17].
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(ii) We have QFT, = ®§:1 QFTZNj = ®§:1 QFTy, for a finite Abelian group G as in Section 1, (ii).
(ili) QFTq |H) = |H*)
Note that in Lemma 3 (ii), each quantum fourier transform acts on a single qudit. If we only allow prime
qudits, we may use the decomposition of G into cyclic groups of prime power order [2, p. 136]. Statement

(iii) of Lemma 3 compactly describes the action of the general fourier group on a subgroup: It flips the group
into its orthogonal complement. Applying QF T then again gives |H) by Lemma 2 (iii).

\/HG\A Al
|0) G2 Y e 19) |H) < )
\_/\
QFT, QFT,

In the figure, Hg denotes the Hadamard operator for GG, which may be defined by the natural generalization
|h) — |G|71/2 > ogec H?Zl(—l)gﬂ”’ |g) for any h € G. There is one more additional property that is useful.

Lemma 4 ([1, p. 20-21]). Setting for any t € G

(4.2) o= ) [t+g)gl and ¢ =D x4(t) lgXgl

geG geG

to be its associated translation and phase shifting operators, we have the commutation
(4.3) QFTqm = ¢:QF T

5 The Quantum Algorithm We now present the full quantum algorithm along with an analysis. The
following is due to [1, pp. 22-23].

Algorithm 1 QUANTUM ALGORITHM FOR SOLVING THE FINITE ABELIAN HSP

Given: A finite Abelian group in its cyclic decomposition G = @?:1 Zn; with {Ny, ..., Ny} € N>o, k € N>y,
a function f: G — X hiding a subgroup H < G as described in Section 1 with X := {0,1}",
z € N>1, z > [logy(|G|/|H])], a qudit register |®) := |0) |0) € S(®?=1 CNi @ CX1) and an oracle
Uy € CIGIXIXIGIX with |g) |h) v |g) |h @ f(g)) for all g € G, h € X.

Return: A generator I' CG for H.

@) + (QFTE @ Ejx)) |®)

|®) < Uy |®)

|©) « (QFT; ® Ejx)) |®)

Measure |®) wrt. the observable {Span({|g) |h) | h € X} | ¢ € G)} and obtain an index element g € G.

Collect 1 +log,(|G|) =: t; elements ¢!, ..., g"' € G by repeating steps 1 to 4.

Form the equation system Ah = (ozjg})lgigté (hj)1<j<k = 0 with h € G and «a; = d/N, for any j €

1<5<

{1,...,k}, where d := lem({Ny, ..., N }). Compute the SNF D € ZZIX’“ of A, and associated unimodular

matrices U € Z ™" and V € ZE**.
7. Sample 1+ log,(|G|) =: t2 random solutions h', ..., h'2 to the equation system Dh/ = 0 mod d for b’ € G.
8: return {Vh! .. Vhiz}

9

0) — QFTL,  QFTg

10)

Note that we used the notation S(C™) := {x € C" | ||z|| = 1} for any n € N.
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Algorithm Analysis of the Quantum Part Let T C G be a transversal wrt. G/H, ie. a set of
representatives of the induced partition. Applying the first steps yields

QFTG®E\X\
5.1 0
CEITIY N

Uy 1
(5.2) H\/ﬁglgﬂf(g)) ﬁZI +H \ﬁzﬂsl

teT teT

FT E
(5.3) QFT®F x|

m};QFTGMHM émz;w 1)
te te

(1) Use the commutation relation from Lemma 4, apply Lemma 3 (iii) and then use the fact that |T'| =
|G/H| = |H*| by Lemma 2 (ii).

Note the phase shifting operator ¢, for any ¢t € T in the resulting state does not influence measurements, so
we have successfully, using the general QFT and the oracle, stored a uniform superposition of the elements in
|H J-> in the first register. This suggests that we may repeatedly measure on this register to obtain random
elements from H. We will apply the following lemma on random generators.

Lemma 5 ([1, pp. 76-77]). Let G be a finite group and ¢ € N. Then for ¢ + [log,(|G|)] uniformly randomly
chosen elements g1, ..., g¢ 4 [10g,(|c|)] € G We have

1

(5.4) Pr((g1, .. G4 nog,(jc)) = G) =1 — 5

Better results for this exist [1, p. 77], but this lemma suffices. However, it is still not clear how to obtain a
generator for H.

Obtaining a Generator Assume for now that we have obtained elements g', ..., g € G with some ¢ € N>q,
s.t. (g%, ...,g°) = H*. Since H = H**, we have by definition for any h € G, that h € H, iff x;(¢’) = 1 for
any j € {1, ...,£}, as annihilating a generator suffices for the definition of being in the orthogonal complement.
We first reformulate the solution condition via the orthogonal complement in terms of a linear system by
norming the complex roots we consider. Let d := lem({Ny, ..., N;}) be the least common multiple of the

elementary divisors of G. Fix for now some j' € {1,...,£}. Let oy == d/Nj. Then wy, = 2T/ N = ng'
. gl v
Furthermore, x,(g’ ) = Hle ng Y= iff Z?Zl a;hjg; =0mod d. Letting j" be loose now, giving the

system of congruences

221 ajgih; =0 mod d
dim1 ajgjz.hj =0mod d

Zf 1ozjgjh =0mod d

or in matrix notation (a]gj) 1<1<g (hj)1<j<k = 0 = Ah over Zg, where we now interpret h as a column
1<5<

vector. If we are able to obtain enough solutions to this system of congruences, we can generate H with
high probability. The necessary solution technique is the Smith Normal Form. Let R be a principal ideal
ring and m, n,d € N> for the following few definitions and theorems.

Definition 4 ([3, p. 1069]). We define the following notions.

(i) An invertible square matrix A € R"*", n € N>q, is called unimodular.
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(ii) Let A € R™*™ be some matrix, 7 := rk(A) in the associated R-module and let U € R™*™, V € R™*"
be unimodular. A matrix D € R"™*" s.t.

S1
(5.6) D=UAV =

0

where the omitted entries in either width or height, depending on m < n or m > n, are zero and s;|s;+1 for
any ¢ € {1, ..., — 1}, is called the Smith Normal Form (SNF) of A.

Theorem 6 ([3, pp. 1073-1074]). Any matrix A € Z™*" admits to a SNF, which can be computed in time
O(m3nlog,(m)), additionally obtaining the similarity matrices.

With O, we denote a looser version of the O-notation, in this case omitting a few logarithmic factors. This
is not the best possible result, see e.g. [4, pp. 273-274], but it is one of the simpler algorithms recovering
the unimodular similarity matrices as well in the general, thus possibly singular, case.

Remark 7. In [1, p. 23], it is stated that [4] gives algorithms for computing both the SNF of a matrix over
Z, as well as the equivalence matrices, but the latter is contradicted in [4, p. 268].

Let t1,t2 € N>1 be loose. We first obtain 1 +log, (|G|) elements generating H-+ with probability > 1—1/2.
After computing the SNF D = UAV, we have U~'DV ! = A, where we interpret first A over Z4 and then
Z, assuming d € O(1) in our runtime considerations. Afterwards, we interpret all matrices over Z, again.
We obtain a uniformly random solution to the diagonal inversion problem DA’ = 0 mod d and set h := V I/,
yielding Ah = U='DV~IVH = 0. Thus, we may obtain t5 + log,(|G|) elements of H this way, which
form a generator with probability > 1 — 1/2!2. In total, we obtain a generator of H with probability
> (1—1/2%)(1—1/2"). Letting t; = ty = 1, this is > 1/4, which means that we may execute the algorithm
four times in expectation.

Runtime Analysis We apply 2k € O(log,(NV)) QFT gates and use an oracle call in the first three steps of the
algorithm. Note that we assume efficient implementations for the qudit unitaries QFTy, , ..., QF Ty, , as these
operations are local. The main cost thus stems from the computation of the SNF. Since t; € O(log,(|G])),

we require a runtime of O(log(|G|) 10g§2)(\G|)), where 1og§2) = log, o log,.

Theorem 8. Algorithm 1 solves the HSP for a finite Abelian group with probability > 1/4 in time
~ 2
O(log3 (|G logh” (1G1)).
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