Notes on the Finite Abelian HSP Algorithm

1 Introduction We quickly introduce the necessary notions, facts and the quantum algorithm, with appropriate citations. Recall the finite Abelian Hidden Subgroup Problem (HSP): Given a finite Abelian group $(G,+)$, a subgroup $H \leq G$ and some $f: G \rightarrow X$ with X an appropriate set, s.t. $\left.f\right|_{g H}$ is constant and $\left.f\right|_{g H}=\left.f\right|_{h H} \rightarrow g=h$ for all $g, h \in G$. Our goal is to find a generator $\Gamma \subseteq H$ for H using a quantum algorithm ${ }^{1}$.
(i) Since the left cosets of H induce a partition of $G[2$, pp. 36-37], choosing X, s.t. $|X| \geq|G / H|=$ $|G| /|H|\left[2\right.$, p. 38], e.g. via $X:=\{0,1\}^{x}$ for some $x \in \mathbb{N}_{\geq 1}, x \geq\left\lceil\log _{2}(|G / H|)\right\rceil$ suffices.
(ii) How do we store group elements in G in a quantum register? We can do that using qudits, because $G \cong \bigoplus_{j=1}^{k} \mathbb{Z}_{N_{j}}$ with $k \in \mathbb{N}_{\geq 1}$ and $\left\{N_{1}, \ldots, N_{k}\right\} \subseteq \mathbb{N}_{\geq 2}$ [2, pp. 132-135], where we take the direct sum of the groups, i.e. the elements of G can be taken to be tuples $G \ni g:=\left(g_{1}, \ldots, g_{k}\right) \in \prod_{j=1}^{k} \mathbb{Z}_{N_{j}}$ [2, pp. 53-54]. Note that we also call N_{1}, \ldots, N_{k} elementary divisors. We take such a decomposition and appropriate qudits as given here ${ }^{2}$.
To formulate the quantum algorithm, an analogon for the \mathbb{Z}_{N} Quantum Fourier Transform for G must be defined. This is done via characteristics.

2 Characteristics

Definition $1([1$, p. 17$])$. A characteristic over G is a group homomorphism $(G,+) \rightarrow\left(\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}, \cdot\right)$.
Lemma 1 ([1, p. 18]). The following statements are true.
(i) The set of characteristics of $G, \chi(G):=\left\{\chi: G \rightarrow \mathbb{C}^{*} \mid \chi\right.$ is a characteristic over $\left.G\right\}$, equipped with the composition of maps, is a group.
(ii) The map $G \hookrightarrow \chi(G), g \mapsto \chi_{g}$ is a group isomorphism, where we call $\chi_{g}: G \rightarrow \mathbb{C}$, $h \mapsto \prod_{j=1}^{k} \omega_{N_{j}}^{g_{j} h_{j}}$ the characteristic induced by g.

3 Orthogonal Subgroups

Definition 2 ([1, p. 18]). For $H \subseteq G$ a subgroup of a group G, we define its orthogonal subgroup as

$$
\begin{equation*}
H^{\perp}:=\left\{g \in G \mid \chi_{g}(H)=\{1\}\right\} \tag{3.1}
\end{equation*}
$$

Lemma 2 ([1, pp. 19-20]). The following statements hold.
(i) $H^{\perp} \leq G$
(ii) $H^{\perp} \cong G / H$
(iii) $H^{\perp \perp}=H$

Note that we included statement (i) here to justify the name in the definition.

4 General Fourier Transform

Definition 3 ([1, p. 20]). We define the Quantum Fourier Transform of the Group G as

$$
\begin{equation*}
\mathrm{QFT}_{G}:=\frac{1}{|G|} \sum_{g, h \in G} \chi_{g}(h)|g\rangle\langle h| \in \mathbb{C}^{|G| \times|G|} \tag{4.1}
\end{equation*}
$$

For $G=\mathbb{Z}_{N}, N \in \mathbb{N}_{\geq 1}$, we thus have $|G|=N$ and $\chi_{g}(h)=e^{i 2 \pi \frac{g h}{N}}$ for any $g, h \in G$, meaning that this corresponds to the Quantum Fourier Transform QFT_{N}. We further set $\left|H^{\prime}\right\rangle:=\frac{1}{\left|H^{\prime}\right|} \sum_{h \in H}|h\rangle$ for any subgroup $H^{\prime} \leq G$. Also, we have $\mathrm{QFT}_{G}|0\rangle=|G|^{-1 / 2} \sum_{g \in G}|g\rangle$ by definition.
Lemma 3 ([1, pp. 19-21, p. 23]). The following statements are true.
(i) QFT_{G} is unitary.

[^0](ii) We have $\mathrm{QFT}_{G}=\bigotimes_{j=1}^{k} \mathrm{QFT}_{\mathbb{Z}_{N_{j}}}=\bigotimes_{j=1}^{k} \mathrm{QFT}_{N_{j}}$ for a finite Abelian group G as in Section 1, (ii).
(iii) $\mathrm{QFT}_{G}|H\rangle=\left|H^{\perp}\right\rangle$

Note that in Lemma 3 (ii), each quantum fourier transform acts on a single qudit. If we only allow prime qudits, we may use the decomposition of G into cyclic groups of prime power order [2, p. 136]. Statement (iii) of Lemma 3 compactly describes the action of the general fourier group on a subgroup: It flips the group into its orthogonal complement. Applying QFT_{G} then again gives $|H\rangle$ by Lemma 2 (iii).

In the figure, H_{G} denotes the Hadamard operator for G, which may be defined by the natural generalization $|h\rangle \mapsto|G|^{-1 / 2} \sum_{g \in G} \prod_{j=1}^{k}(-1)^{g_{j} h_{j}}|g\rangle$ for any $h \in G$. There is one more additional property that is useful.

Lemma 4 ([1, p. 20-21]). Setting for any $t \in G$

$$
\begin{equation*}
\tau_{t}:=\sum_{g \in G}|t+g\rangle\langle g| \text { and } \phi_{t}:=\sum_{g \in G} \chi_{g}(t)|g\rangle\langle g| \tag{4.2}
\end{equation*}
$$

to be its associated translation and phase shifting operators, we have the commutation

$$
\begin{equation*}
\mathrm{QFT}_{G} \tau_{t}=\phi_{t} \mathrm{QFT}_{G} \tag{4.3}
\end{equation*}
$$

5 The Quantum Algorithm We now present the full quantum algorithm along with an analysis. The following is due to [1, pp. 22-23].

Algorithm 1 Quantum Algorithm for Solving the Finite Abelian HSP

Given: A finite Abelian group in its cyclic decomposition $G=\bigoplus_{j=1}^{k} \mathbb{Z}_{N_{j}}$ with $\left\{N_{1}, \ldots, N_{k}\right\} \subseteq \mathbb{N}_{\geq 2}, k \in \mathbb{N}_{\geq 1}$, a function $f: G \rightarrow X$ hiding a subgroup $H \leq G$ as described in Section 1 with $X:=\{0,1\}^{x}$, $x \in \mathbb{N}_{\geq 1}, x \geq\left\lceil\log _{2}(|G| /|H|)\right\rceil$, a qudit register $|\Phi\rangle:=|0\rangle|0\rangle \in S\left(\bigotimes_{j=1}^{k} \mathbb{C}^{N_{j}} \otimes \mathbb{C}^{|X|}\right)$ and an oracle $U_{f} \in \mathbb{C}^{|G||X| \times|G||X|}$ with $|g\rangle|h\rangle \mapsto|g\rangle|h \oplus f(g)\rangle$ for all $g \in G, h \in X$.
Return: A generator $\Gamma \subseteq G$ for H.
1: $|\Phi\rangle \leftarrow\left(\mathrm{QFT}_{G}^{\dagger} \otimes E_{|X|}\right)|\Phi\rangle$
$|\Phi\rangle \leftarrow U_{f}|\Phi\rangle$
$|\Phi\rangle \leftarrow\left(\mathrm{QFT}_{G} \otimes E_{|X|}\right)|\Phi\rangle$
Measure $|\Phi\rangle$ wrt. the observable $\{\operatorname{Span}(\{|g\rangle|h\rangle \mid h \in X\} \mid g \in G)\}$ and obtain an index element $g \in G$.
Collect $1+\log _{2}(|G|)=: t_{1}$ elements $g^{1}, \ldots, g^{t_{1}} \in G$ by repeating steps 1 to 4 .
Form the equation system $A h:=\left(\alpha_{j} g_{j}^{i}\right)_{\substack{1 \leq i \leq t_{1} \\ 1 \leq j \leq k}}\left(h_{j}\right)_{1 \leq j \leq k}=0$ with $h \in G$ and $\alpha_{j}:=d / N_{j}$ for any $j \in$ $\{1, \ldots, k\}$, where $d:=\operatorname{lcm}\left(\left\{N_{1}, \ldots, N_{k}\right\}\right)$. Compute the SNF $D \in \mathbb{Z}_{d}^{t_{1} \times k}$ of A, and associated unimodular matrices $U \in \mathbb{Z}_{d}^{t_{1} \times t_{1}}$ and $V \in \mathbb{Z}_{d}^{k \times k}$.
Sample $1+\log _{2}(|G|)=: t_{2}$ random solutions $h^{1}, \ldots, h^{t_{2}}$ to the equation system $D h^{\prime} \equiv 0 \bmod d$ for $h^{\prime} \in G$. return $\left\{V h^{1}, \ldots, V h^{t_{2}}\right\}$

Note that we used the notation $S\left(C^{n}\right):=\left\{x \in \mathbb{C}^{n} \mid\|x\|=1\right\}$ for any $n \in \mathbb{N}$.

Algorithm Analysis of the Quantum Part Let $T \subseteq G$ be a transversal wrt. G / H, i.e. a set of representatives of the induced partition. Applying the first steps yields

$$
\begin{align*}
|0\rangle|0\rangle & \stackrel{\mathrm{QFT}_{G}^{\dagger} \otimes E_{|X|}}{\longmapsto} \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|0\rangle \tag{5.1}\\
& \stackrel{U_{f}}{\longmapsto} \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|f(g)\rangle=\frac{1}{\sqrt{|T|}} \sum_{t \in T}|t+H\rangle|f(t)\rangle=\frac{1}{\sqrt{|T|}} \sum_{t \in T} \tau_{t}|H\rangle|f(t)\rangle \tag{5.2}\\
& \stackrel{\mathrm{QFT}_{G} \otimes E_{|X|}}{\longmapsto} \frac{1}{\sqrt{|T|}} \sum_{t \in T} \mathrm{QFT}_{G} \tau_{t}|H\rangle|f(t)\rangle \stackrel{(1)}{=} \frac{1}{\sqrt{\left|H^{\perp}\right|}} \sum_{t \in T} \phi_{t}\left|H^{\perp}\right\rangle|f(t)\rangle \tag{5.3}
\end{align*}
$$

(1) Use the commutation relation from Lemma 4, apply Lemma 3 (iii) and then use the fact that $|T|=$ $|G / H|=\left|H^{\perp}\right|$ by Lemma 2 (ii).

Note the phase shifting operator ϕ_{t} for any $t \in T$ in the resulting state does not influence measurements, so we have successfully, using the general QFT and the oracle, stored a uniform superposition of the elements in $\left|H^{\perp}\right\rangle$ in the first register. This suggests that we may repeatedly measure on this register to obtain random elements from H^{\perp}. We will apply the following lemma on random generators.

Lemma 5 ([1, pp. 76-77]). Let G be a finite group and $t \in \mathbb{N}$. Then for $t+\left\lceil\log _{2}(|G|)\right\rceil$ uniformly randomly chosen elements $g_{1}, \ldots, g_{t+\left\lceil\log _{2}(|G|)\right\rceil} \in G$, we have

$$
\begin{equation*}
\operatorname{Pr}\left(\left\langle g_{1}, \ldots, g_{t+\left\lceil\log _{2}(|G|)\right\rceil}\right\rangle=G\right) \geq 1-\frac{1}{2^{t}} \tag{5.4}
\end{equation*}
$$

Better results for this exist [1, p. 77], but this lemma suffices. However, it is still not clear how to obtain a generator for H.
Obtaining a Generator Assume for now that we have obtained elements $g^{1}, \ldots, g^{\ell} \in G$ with some $\ell \in \mathbb{N}_{\geq 1}$, s.t. $\left\langle g^{1}, \ldots, g^{\ell}\right\rangle=H^{\perp}$. Since $H=H^{\perp \perp}$, we have by definition for any $h \in G$, that $h \in H$, iff $\chi_{h}\left(g^{j}\right)=1$ for any $j \in\{1, \ldots, \ell\}$, as annihilating a generator suffices for the definition of being in the orthogonal complement. We first reformulate the solution condition via the orthogonal complement in terms of a linear system by norming the complex roots we consider. Let $d:=\operatorname{lcm}\left(\left\{N_{1}, \ldots, N_{k}\right\}\right)$ be the least common multiple of the elementary divisors of G. Fix for now some $j^{\prime} \in\{1, \ldots, \ell\}$. Let $\alpha_{j^{\prime}}:=d / N_{j^{\prime}}$. Then $\omega_{N_{j}}=e^{i 2 \pi / N_{j}}=\omega_{d}^{\alpha_{j^{\prime}}}$. Furthermore, $\chi_{h}\left(g^{j^{\prime}}\right)=\prod_{j=1}^{k} \omega_{d}^{\alpha_{j} h_{j} g_{j}^{j^{\prime}}}=1$, iff $\sum_{j=1}^{k} \alpha_{j} h_{j} g_{j}^{j^{\prime}} \equiv 0 \bmod d$. Letting j^{\prime} be loose now, giving the system of congruences

$$
\begin{align*}
& \sum_{j=1}^{k} \alpha_{j} g_{j}^{1} h_{j} \equiv 0 \bmod d \tag{5.5}\\
& \sum_{j=1}^{k} \alpha_{j} g_{j}^{2} h_{j} \equiv 0 \bmod d \\
& \vdots \\
& \sum_{j=1}^{k} \alpha_{j} g_{j}^{\ell} h_{j} \equiv 0 \bmod d
\end{align*}
$$

or in matrix notation $\left(\alpha_{j} g_{j}^{i}\right)_{\substack{1 \leq i \leq \ell \\ 1 \leq j \leq k}}\left(h_{j}\right)_{1 \leq j \leq k}=0=: A h$ over \mathbb{Z}_{d}, where we now interpret h as a column vector. If we are able to obtain enough solutions to this system of congruences, we can generate H with high probability. The necessary solution technique is the Smith Normal Form. Let R be a principal ideal ring and $m, n, d \in \mathbb{N}_{\geq 1}$ for the following few definitions and theorems.

Definition 4 ([3, p. 1069]). We define the following notions.
(i) An invertible square matrix $A \in R^{n \times n}, n \in \mathbb{N}_{\geq 1}$, is called unimodular.
(ii) Let $A \in R^{m \times n}$ be some matrix, $r:=\operatorname{rk}(A)$ in the associated R-module and let $U \in R^{m \times m}, V \in R^{n \times n}$ be unimodular. A matrix $D \in R^{m \times n}$, s.t.

$$
D=U A V=\left(\begin{array}{cccccc}
s_{1} & & & & & \tag{5.6}\\
& \ddots & & & & \\
& & s_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

where the omitted entries in either width or height, depending on $m \leq n$ or $m>n$, are zero and $s_{i} \mid s_{i+1}$ for any $i \in\{1, \ldots, r-1\}$, is called the Smith Normal Form (SNF) of A.
Theorem 6 ([3, pp. 1073-1074]). Any matrix $A \in \mathbb{Z}^{m \times n}$ admits to a SNF, which can be computed in time $\tilde{O}\left(m^{3} n \log _{2}(m)\right)$, additionally obtaining the similarity matrices.

With \tilde{O}, we denote a looser version of the O-notation, in this case omitting a few logarithmic factors. This is not the best possible result, see e.g. [4, pp. 273-274], but it is one of the simpler algorithms recovering the unimodular similarity matrices as well in the general, thus possibly singular, case.

Remark 7. In [1, p. 23], it is stated that [4] gives algorithms for computing both the SNF of a matrix over \mathbb{Z}, as well as the equivalence matrices, but the latter is contradicted in [4, p. 268].
Let $t_{1}, t_{2} \in \mathbb{N}_{\geq 1}$ be loose. We first obtain $t_{1}+\log _{2}(|G|)$ elements generating H^{\perp} with probability $\geq 1-1 / 2^{t_{1}}$. After computing the SNF $D=U A V$, we have $U^{-1} D V^{-1}=A$, where we interpret first A over \mathbb{Z}_{d} and then \mathbb{Z}, assuming $d \in O(1)$ in our runtime considerations. Afterwards, we interpret all matrices over \mathbb{Z}_{d} again. We obtain a uniformly random solution to the diagonal inversion problem $D h^{\prime} \equiv 0 \bmod d$ and set $h:=V h^{\prime}$, yielding $A h=U^{-1} D V^{-1} V h^{\prime}=0$. Thus, we may obtain $t_{2}+\log _{2}(|G|)$ elements of H this way, which form a generator with probability $\geq 1-1 / 2^{t_{2}}$. In total, we obtain a generator of H with probability $\geq\left(1-1 / 2^{t_{1}}\right)\left(1-1 / 2^{t_{2}}\right)$. Letting $t_{1}=t_{2}=1$, this is $\geq 1 / 4$, which means that we may execute the algorithm four times in expectation.
Runtime Analysis We apply $2 k \in O\left(\log _{2}(N)\right)$ QFT gates and use an oracle call in the first three steps of the algorithm. Note that we assume efficient implementations for the qudit unitaries $\mathrm{QFT}_{N_{1}}, \ldots, \mathrm{QFT}_{N_{k}}$, as these operations are local. The main cost thus stems from the computation of the SNF. Since $t_{1} \in O\left(\log _{2}(|G|)\right)$, we require a runtime of $\tilde{O}\left(\log _{2}^{3}(|G|) \log _{2}^{(2)}(|G|)\right)$, where $\log _{2}^{(2)}:=\log _{2} \circ \log _{2}$.

Theorem 8. Algorithm 1 solves the HSP for a finite Abelian group with probability $\geq 1 / 4$ in time $\tilde{O}\left(\log _{2}^{3}(|G|) \log _{2}^{(2)}(|G|)\right)$.

References

[1] Lomont, Chris, "The Hidden Subgroup Problem - Review and Open Problems," DoI: https://doi. org/10.48550/arXiv.quant-ph/0411037.
[2] Fischer, Gerd, Lehrbuch der Algebra, ISBN: 978-3-658-19365-2.
[3] L. Hafner, James and S. McCurley, Kevin, "Asymptotically Fast Triangularization of Matrices over Rings," DOI: 10.1137/0220067.
[4] Storjohann, Arne, "Near optimal algorithms for computing Smith normal forms of integer matrices," DOI: 10.1145/236869. 237084.

[^0]: ${ }^{1}$ Classically, this problem is difficult, as the prime factorization problem shows [1, p. 24].
 ${ }^{2}$ Finding such a decomposition is difficult, although a quantum algorithm exists [1, p. 17].

