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The Gershgorin Circle Theorem Let 𝐴 ≔ (𝑎𝑖𝑗)(𝑖,𝑗)∈[1,𝑛]2ℕ ∈ ℂ𝑛×𝑛, 𝑛 ∈ ℕ≥1, be a complex matrix. Our
goal in these notes is to present a small technique when approximating the spectrum 𝜎(𝐴) = {𝜆 ∈ ℂ ∣ ∃ 𝑣 ∈
ℂ𝑛 ∶ 𝐴𝑣 = 𝜆𝑣} of an operator. This in turn gives approximations on ‖𝐻‖ for a Hamiltonian 𝐻 ∈ 𝐻(𝑛)
under the operator norm: A Hamiltonian admits to a basis of eigenvectors by some eigenvalue-eigenstate
pairs (𝜀1, |𝜀1⟩), ..., (𝜀𝑛, |𝜀𝑛⟩) ∈ ℂ × 𝑆(ℂ𝑛) after Gram-Schmidt diagonalization. For some |𝜉⟩ ∈ 𝑆(ℂ𝑛), we
thus have with the Parseval equality and Bessel inequality ‖𝐻 |𝜉⟩‖2 = ∑𝑛

𝑖=1 |𝜀𝑖 ⟨𝜉|𝜀𝑖⟩ |2 ≤ max𝑖∈[1,𝑛]ℕ |𝜀𝑖|2, so
‖𝐻‖ ≤ max𝑖∈[1,𝑛]ℕ |𝜀𝑖|.
One approach to bounding the spectrum may be the following [1, pp. 387-388]: We interpret the eigenvalues
as points in the complex plane ℂ. Setting 𝐷 ≔ diag(𝑎11, ..., 𝑎𝑛𝑛) and 𝐵 ≔ 𝐴 − 𝐷, we have 𝐴 = 𝐷 + 𝐵. The
eigenvalues of 𝐷 are 𝑎11, ..., 𝑎𝑛𝑛, enumerated with their respective algebraic multiplicities. Since the map
𝑀 ↦ ‖(𝐷 + 𝑀)𝑒𝑖‖ is continuous, we see that a small perturbation of 𝐷 of form 𝐴𝜀 ≔ 𝐷 + 𝜀𝐵 with 𝜀 ∈ [0, 1]
should slowly move 𝑎𝑖𝑖 along some path in ℂ. The following criterion makes that idea precise and is due to
the Russian mathematician Gershgorin/Geršgorin/Гершгорин.
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Figure 1. Visualizing sketch of moving spectrums for 𝑛 = 6, wlog. no crossings between
eigenvalue curves and smooth curves of movement. 𝑣𝑖(𝜀) ∈ ℂ for 𝑖 ∈ [1, 6]ℕ denotes the
path-corresponding 𝑖th eigenvalue of 𝐴𝜀 for 𝜀 ∈ [0, 1]. Additionally, environments around
the points 𝑎𝑖𝑖 are marked to signify the importance of continuity. When increasing 𝜀, the
radius of each Гершгорин disc grows and at some point they each encompass their associated
𝜀𝑖(1) value.

Theorem 1 (Gershgorin Circle Theorem [1, pp. 387-389]). Define 𝑟𝑖(𝐴) ≔ ∑𝑗∈[1,𝑛]ℕ⧵{𝑖} |𝑎𝑖𝑗| to be the ℓ1-
norm of the 𝑖-th row vector without its 𝑖th entry for a fixed 𝑖 ∈ [1, 𝑛]ℕ. Furthermore, set 𝐺𝑖(𝐴) ≔ 𝐵(𝑎𝑖𝑖, 𝑟𝑖(𝐴))
to be the 𝑖th Gershgorin disc and let 𝐺(𝐴) ≔ ⋃𝑖∈[1,𝑛]ℕ

𝐺𝑖(𝐴).
(i) It holds, that

𝜎(𝐴) ⊆ 𝐺(𝐴)(1)
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(ii) For 𝑘 ∈ [0, 𝑛]ℕ and 𝐼 ⊆ [1, 𝑛]ℕ, |𝐼| = 𝑘, let 𝐺𝐼(𝐴) ≔ ⋃𝑖∈𝐼 𝐺𝑖(𝐴). If 𝐺𝐼(𝐴) ∩ 𝐺[1,𝑛]ℕ⧵𝐼(𝐴) = ∅, then
𝐺𝐼(𝐴) contains exactly 𝑘 eigenvalues of 𝐴, counted according to their algebraic multiplicities.
We will need the following theorems from complex analysis.
Theorem 2 (Argument Principle [2, p. 350]). Let 𝐷 ⊆ ℂ be a domain (i.e., open and nonempty), 𝑓 ∶ 𝐷 → ℂ
be meromorphic with finitely many zeros and poles in 𝐷 and 𝛾 ∶ [0, 1] → ℂ be simply closed and null
homologous with no zeros or poles of 𝑓 in Im(𝛾). Then

1
2𝜋𝑖 ∮

𝛾

𝑓 ′

𝑓 = 𝑁 − 𝑃(2)

for the zero count 𝑁 and pole count 𝑃 of 𝑓 in 𝐷, counted with multiplicities and 𝑁, 𝑃 ∈ ℕ.
Theorem 3 (Integral Function Holomorphicity [2, pp. 212-213]). Let 𝛾 ∶ [0, 1] → ℂ be a piecewise differen-
tiable path and 𝑓 ∶ ℂ2 → ℂ be continuous on Im(𝛾) × 𝐷 for a domain 𝐷 ⊆ ℂ, where ℂ2 is equipped with its
metric topology. Also let 𝑓|{𝛾(𝑡)}×𝐷 be holomorphic for any 𝑡 ∈ [0, 1]. Then

𝑔(𝑧) ≔ ∫
𝛾

𝑓(𝜁, 𝑧)𝑑𝜁(3)

is holomorphic in 𝐷.
Some elaborations on this theorem from complex analysis follow, more can be found in any textbook on
complex analysis, e.g. [2].
• The space of complex numbers ℂ can be equipped with the natural norm, associated metric and topological
structure from ℝ2 ≅ ℂ. Continuity of functions is defined by that. Adding a point ∞, a space ℂ ∪ {∞} can
also be defined with a natural topology considering open sets with ∞ contained as infinite.
• A domain is a nonempty, open subset 𝐷 ⊆ ℂ.
• Holomorphic functions are functions of form 𝑓 ∶ 𝐷 → ℂ, s.t. for any 𝑥 ∈ ℂ, lim𝑧→𝑥(𝑓(𝑧) − 𝑓(𝑥))/(𝑧 − 𝑥)
exists, i.e. they are complex differentiable, because the associated sequences in the definition are ℂ-sequences.
• A pole is a point 𝑐 ∈ ℂ, s.t. there is a 𝜈 ∈ ℕ, s.t. 𝑧 ↦ (𝑧 − 𝑐)𝜈𝑓(𝑧) can be holomorphically extended at 𝑐.
• Meromorphic functions are pairs (𝑓, 𝑃 (𝑓)), s.t. 𝑓 ∶ 𝐷 → ℂ ∪ {∞} is a function with the property that
𝑓|𝐷⧵𝑃(𝑓) is holomorphic and 𝑃(𝑓) ⊆ 𝐷 is a discrete set of poles of 𝑓 , i.e. int(𝑃 (𝑓)) = ∅.
• Continuous maps of form 𝛾 ∶ [0, 1] → ℂ are called paths. If 𝛾(0) = 𝛾(1), then we call the path 𝛾 closed.
• We define a path integral using the natural component-wise definition of an integral for a complex function
with values in ℝ as ∮𝛾 𝑓 = ∫1

𝑡=0(𝑓 ∘ 𝛾)(𝑡) ̇𝛾(𝑡)𝑑𝑡. We further associate an index ind𝛾(𝑧) = 1
2𝜋𝑖 ∮𝛾

𝑑𝜁
𝜁−𝑧 , the

winding number of 𝛾 around 𝑧 ∉ Im(𝛾), and an interior Int(𝛾) = {𝑧 ∈ ℂ ⧵ Im(𝛾) ∣ ind𝛾(𝑧) ≠ 0}. We further
call 𝛾 null homologous, if Int(𝛾) ⊆ 𝐷. Lastly, 𝛾 is called simply closed, if Int(𝛾) ≠ ∅ and ind𝛾(𝑧) = 1 for all
𝑧 ∈ Int(𝛾). One example of the latter constitute any one-winded loops around a center point.

Proof. (i) Let (𝜆, 𝑥) be an eigenpair of 𝐴 with wlog. 𝑥 ≠ 0. We show 𝜆 ∈ 𝐺(𝐴). Let 𝑝 ≔ argmax𝑖∈{1,...,𝑛} |𝑥𝑖|,
s.t. ‖𝑥‖∞ = |𝑥𝑝|. Writing out the 𝑝th entries in the equation 𝐴𝑥 = 𝜆𝑥 gives

(𝜆 − 𝑎𝑝𝑝)𝑥𝑝 = ∑
𝑖∈[1,𝑛]ℕ⧵{𝑝}

𝑎𝑝𝑖𝑥𝑖(4)

Using the triangle inequality and |𝑥𝑖| ≤ |𝑥𝑝| for any 𝑖 ∈ [1, 𝑛]ℕ, we obtain
|𝜆 − 𝑎𝑝𝑝||𝑥𝑝| ≤ 𝑟𝑝(𝐴)|𝑥𝑝|(5)

i.e. 𝜆 ∈ 𝐺(𝐴).
(ii) Recall the definitions of 𝐴, 𝐷, 𝐵 and 𝐴𝜀 in the introduction. We have that the diagonals of 𝐴 and 𝐴𝜀
coincide by definition and that 𝑟𝑖(𝐴𝜀) = 𝑟𝑖(𝜀𝐴) = 𝜀𝑟𝑖(𝐴) for any 𝑖 ∈ [1, 𝑛]ℕ, giving with (i), that

𝜎(𝐴𝜀) ⊆ 𝐺𝐼(𝐴𝜀) ⊆ 𝐺𝐼(𝐴) ∪ 𝐺[1,𝑛]ℕ⧵𝐼(𝐴)(6)
We will need the parameter 𝜀 in the following. Let 𝛾 ∶ [0, 1] → ℂ be a simply closed piecewise differentiable
path surrounding 𝐺𝐼(𝐴), disjoint from 𝐺[1,𝑛]ℕ⧵𝐼 and null homologous in a suitable domain encompassing
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Figure 2. Contour plot of |𝑓| for the meromorphic function (𝑓 ∶ ℂ → ℂ ∪ {∞}, 𝑧 ↦ 1
𝑧2+1 −

1
2 , {−𝑖, 𝑖}) in the domain (−3, 3) × (−3, 3)𝑖. Note that warmer colors mean higher values.
With the null homologous simply closed loop 𝛾 winding around 𝐵(0, 2), we have ∮𝛾

𝑓′

𝑓 =
2 − 2 = 0, since 𝑁 = 2 and 𝑃 = 2.

𝐺𝐼(𝐴)1. Let 𝑝𝜀 be the characteristic polynomial of 𝐴𝜀 for some 𝜀 ∈ [0, 1]. Since 𝜎(𝐴𝜀) ∩ Im(𝛾) = ∅, we can
apply Theorem 2, s.t. we have for the zero count function 𝑁 ∶ [0, 1] → ℕ of 𝑝𝜀 in 𝐺𝐼(𝐴𝜀), that

𝑁(𝜀) = 1
2𝜋𝑖 ∮

𝛾

𝑝′
𝜀

𝑝𝜀
(7)

since 𝑝𝜀 is a meromorphic function with no poles and exactly 𝑛 zeros in total, meaning that it has to
have finitely many zeros in the domain which is encompassed by 𝛾. Note that Theorem 2 also accounts
for the algebraic multiplicities of the roots. Applying Theorem 3, we obtain, that 𝑁 is thus a continuous
integer-valued function, so it is constant. Since 𝑁(0) = 𝑘, we thus have 𝑁(1) = 𝑘, proving the theorem.

■

We shall now apply Гершгорин to a few specific problems, illustrating its possible use in the study of AQC
algorithms. Recall for an AQC algorithm especially the rigorous adiabatic condition [3, p. 7]

𝑡𝑓 ≥ 3
𝜀 max

𝑠∈[0,1]
max

⎧{
⎨{⎩

𝑚∥�̇�∥
Δ2 ∣

𝑠
, 𝑚∥�̈�∥

Δ2 + 7𝑚3/2∥�̇�∥2

Δ3 ∣
𝑠

⎫}
⎬}⎭

(8)

with 𝑡𝑓 ∈ ℝ>0 being the total evolution time, 𝑚∶ [0, 1] → ℕ being the dimension of the current ground
state space, 𝐻 ∶ [0, 1] → 𝐻(𝑛) being the Hamiltonian path, Δ∶ [0, 1] → ℝ>0 being the ground state gap and
𝜀 ∈ ℝ>0 being the projector error. Гершгорин can thus be used to estimate especially min𝑠∈[0,1] Δ, ∥�̇�∥
and ∥�̈�∥, following the bounding technique with the largest eigenvalue from the introduction of this text.
Furthermore, we observe that since a Hamiltonian has real diagonals and eigenvalues, that the Гершгорин
discs correspond to intervals on the real line.
Example 4. For any diagonal matrix 𝐷 ≔ diag(𝑎1, ..., 𝑎𝑛) with 𝑎1, ..., 𝑎𝑛 ∈ ℂ, we have 𝐺(𝐴) = {𝑎1, ..., 𝑎𝑛},
thus the union of the Гершгорин discs corresponds precisely to the spectrum 𝜎(𝐴).

1The argument here follows the authors of the proof from the citation and is fully elementary-geometric: Consider this finite
count of discs and draw such a fitting line, which will be possible, because we may proceed inductively by starting at one disc,
surrounding it almost fully and then drawing a line to a next disc and so on, in the end we arrive at the first disc, completing
the path.
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Example 5. Suppose 𝐻 = ⎛⎜
⎝

ℎ1
⋮

ℎ𝑛

⎞⎟
⎠

∈ 𝐻(𝑛) is an 𝑠-sparse Hamiltonian, then we have for the row sums, that

𝑟𝑖(𝐻) ≤ 𝑠‖ℎ𝑖‖∞ for any 𝑖 ∈ [1, 𝑛]ℕ. A special case occurs when 𝐻 is stochastic, i.e. 𝐻 ∈ [0, 1]𝑛×𝑛 and
𝑟𝑖(𝐻) = 1 for all 𝑖 ∈ [1, 𝑛]ℕ, since the individual Гершгорин discs become unit intervals and especially,
𝐺(𝐻) ⊆ 𝐵(1/2, 3/2). In the latter case we thus have for an adiabatic process using a path of form 𝑠 ↦
(1 − 𝑠)𝐻0 + 𝑠𝐻1 with 𝐻0, 𝐻1 ∈ 𝐻(𝑛) being stochastic and using Гершгорин, that ∥ ̇𝐻(𝑠)∥ ∈ 𝑂(1) and
∥ ̈𝐻(𝑠)∥ = 0 for any 𝑠 ∈ [0, 1]. The ground state gap Δ may become arbitrarily small.

Example 6 ([3, p. 10]). Consider the Hamiltonian 𝐻0 ≔ 𝐸𝑁 − |𝜙⟩⟨𝜙|, 𝑁 ≔ 2𝑛, with |𝜙⟩ ≔ 𝐻⊗𝑛 |0⟩⊗𝑛 and
𝐻1 ≔ |𝑚⟩⟨𝑚|, 𝑚 ∈ [0, 𝑁 − 1]ℕ, as well as the usual linear non-catalystic interpolation path 𝐻 ∶ [0, 1] →
𝐻(𝑁), 𝑠 ↦ (1 − 𝑠)𝐻0 + 𝑠𝐻1. Computing ∥ ̇𝐻(𝑠)∥, 𝑠 ∈ [0, 1], to apply the rigorous adiabatic theorem in
the analysis of the adiabatic Grover algorithm is a bit cumbersome, with Example 5 we can first conclude
‖𝐻0‖ ∈ 𝑂(1), as both 𝐸𝑁 and |𝜙⟩⟨𝜙| are stochastic, although this is not particularly useful. Using Гершгорин
directly, we obtain

𝜎( ̇𝐻(𝑠)) ⊆ 𝐺( ̇𝐻(𝑠)) = 𝐵 ( 1
𝑁 , 𝑁 − 1

𝑁 ) ∪ 𝐵 (𝑁 − 1
𝑁 , 𝑁 − 1

𝑁 )(9)

since

�̇�(𝑠) =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
𝑁 ⋯ 1

𝑁
⋱

⋮ 𝑁−1
𝑁 ⋮

⋱
1
𝑁 ⋯ 1

𝑁

⎞⎟⎟⎟⎟⎟⎟
⎠

(10)

Thus max𝑠∈[0,1] ∥ ̇𝐻(𝑠)∥ ≤ 2. For Δ we can not use Гершгорин.

Example 7 ([4, p. 2]). Consider the Glued Trees catalystic Hamiltonian path

𝐻(𝑠) = (1 − 𝑠)𝐻0 +
√

2(1 − 𝑠)𝑠𝐴 + (1/
√

8)𝑠𝐻1 ∈ 𝐻(2𝑛+2)(11)

with 𝐻0 ≔ |𝛼(𝑣𝑙)⟩⟨𝛼(𝑣𝑙)|, 𝐴 being an adjacency matrix of a glued tree graph 𝐺 = (𝑉 , 𝐸) and 𝐻𝑟 ≔
|𝛼(𝑣𝑟)⟩⟨𝛼(𝑣𝑟)| with 𝛼∶ 𝑉 → {0, 1}𝑛+2 being an (injective) encoding function and 𝑣𝑙, 𝑣𝑟 ∈ 𝑉 being the left
and rightmost vertices of the graph. 𝐴 is 3-sparse and thus ∥ ̇𝐻(𝑠)∥, ∥ ̈𝐻(𝑠)∥ ∈ 𝑂(1), as we may directly verify
from the catalyst polynomial scalar.

Example 8 ([3, pp. 12-13]). We shall quickly demonstrate a rather nonstandard Hamiltonian path, where it
is not trivial how to apply Гершгорин. Consider the Hamiltonian for the adiabatic Deutsch-Jozsa algorithm
based on unitary interpolation

𝐻(𝑠) = ̃𝑈𝑓(𝑠)𝐻0 ̃𝑈†
𝑓 (𝑠), ̃𝑈𝑓(𝑠) ≔ exp(𝑖𝜋

2 𝑠𝑈𝑓)(12)

with 𝑈𝑓 ∈ 𝑈(𝑁), |𝑥⟩ ↦ (−1)𝑓(𝑥) |𝑥⟩ being the oracle for the function of discussion 𝑓 ∶ {0, 1}𝑛 → {0, 1}.

We thus can make the following two observations:
• The values on the diagonal dictate the centers of the Гершгорин discs. If these values are large and the
remainder row sums are low, the Hamiltonian paths may become more interesting, because in the examples
discussed the energy change of the system has always been 𝑂(1).
• We may also be able to approximate Δ well, if the Гершгорин discs are all disjoint, by reducing that
problem to the purely algorithmic geometric problem of finding the lowest distance that any pair of discs in
a disc arrangement has.
We construct in the following a specific example for phase extraction from a specific Hamiltonian that utilizes
this idea.
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Example 9. Consider the Hamiltonians

𝐻0 ≔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 1
2𝑁 √1 − cos ( 2𝜋

𝑁 )
0 1

𝑁 ⋯ 1
2𝑁 √1 − cos ( 2𝜋

𝑁 ) 0
⋮ ⋮ ⋱ ⋮ ⋮
0 1

2𝑁 √1 − cos ( 2𝜋
𝑁 ) ⋯ 𝑁−2

𝑁 0
1

2𝑁 √1 − cos ( 2𝜋
𝑁 ) 0 ⋯ 0 𝑁−1

𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,(13)

𝐻1 ≔
⎛⎜⎜⎜
⎝

0 ⋯ 1
2𝑁 √1 − cos ( 2𝜋

𝑁 )𝑒−𝑖𝜑

⋮ ⋱ ⋮
1

2𝑁 √1 − cos ( 2𝜋
𝑁 )𝑒𝑖𝜑 ⋯ 𝑁−1

𝑁

⎞⎟⎟⎟
⎠

∈ 𝐻(𝑁)(14)

with 𝐻1 being defined in the same pattern as 𝐻0, where 𝜑 ∈ (−𝜋, 𝜋] is some unknown phase, omitted
entries are all zero besides the two diagonals and for which we again define the linear interpolation path
𝐻 ∶ [0, 1] → 𝐻(𝑁), 𝑠 ↦ (1 − 𝑠)𝐻0 + 𝑠𝐻1. We also take 𝑛 ≥ 3 s.t. cos(2𝜋/𝑁) ∈ [0, 1) for Δ > 0, as we have
for any 𝑠 ∈ [0, 1], that

𝐺(𝐻(𝑠)) =
𝑁−1
⋃
𝑖=0

𝐵 ( 𝑖
𝑁 , 1

2𝑁 √1 − cos(2𝜋
𝑁 ))(15)

s.t. we have

Δ > 1
𝑁 − 2 ⋅ 1

2𝑁 √1 − cos(2𝜋
𝑁 ) = 1

𝑁 (1 − √1 − cos(2𝜋
𝑁 )) ∈ Θ ( 1

𝑁 )(16)

The Гершгорин discs are all disjoint, as seen in the example of Figure 3, justifying the choice of the coefficients
in the mirrored diagonal. It is also clear by the previous examples that ∥�̇�(𝑠)∥, ∥�̈�(𝑠)∥ ∈ 𝑂(1) now for any
𝑠 ∈ [0, 1], paving the way for an AQC algorithm, which is not efficient though due to the very low ground
state gap. We may still attempt to bound the gap directly. Suppose 𝑛 is not fixed and we are to bound
Δ ≥ 𝜀 ∈ ℝ>0, then

𝜀 > 1
𝑁 (1 − √1 − cos(2𝜋

𝑁 )) ; 𝑁2 − 2
𝜀𝑁 + 1

𝜀2 cos(2𝜋
𝑁 ) ≥ 𝑁2 − 2

𝜀𝑁 +
√

2
2𝜀2 > 0(17)

The roots of the relevant polynomial are

1
𝜀

⎛⎜
⎝

1 ± √1 −
√

2
2

⎞⎟
⎠

∈ 𝑂(1/𝜀)(18)

So to satisfy Δ ≥ 𝜀, we must have 𝑁 ∈ Θ(1/𝜀) or 𝑛 ∈ Θ(log2(1/𝜀)). This only concerns the gap though, so
a trivial choice of 𝜀 ∈ Θ(1) would certainly lead to a fast, but uninteresting algorithm.
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Figure 3. Illustration of 𝐺(𝐻(𝑠)) for 𝑛 = 3, 𝜑 = 𝜋/18 (e.g., but can be arbitrary) and
𝑠 ∈ [0, 1] arbitrary, but fixed, from Example 9.
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