
Algorithmic Geometry Notes SoSe 2021

Point Location using Hierarchical Decomposition July 26, 2021 (newest version)
valentinpi
Freie Universität Berlin

Abstract
Planar Point Location has many useful applications, for instance in map apps or in video games. This
short article presents the very elegant Hierarchical Decomposition Method for Point Location from my
course on Algorithmic Geometry by giving an informal description and a runtime analysis. The resulting
datastructure can be preprocessed in O(n) time, using the same space complexity and a query time of
O(logn).

ATTENTION: I do not claim ownership of the contents here. All of the ideas are from my lecture notes.
However, I find this construction to be fascinating.

Preliminaries Let R denote the set of real numbers. A planar subdivision is an embedding/drawing of a
planar graph G = (V,E) into the plane R2, consisting of vertices, edges and faces.
Basic knowledge of planar graphs and geometry is required for reading this paper.

Task: Given a planar subdivision P and a point p ∈ R2, find the face in which p falls.

G1

Hierarchical Decomposition Method I will now present the
idea. First, wlog put the planar subdivision inside of a gigantic
triangle. Then, triangulate that subdivisions faces in O(log n) time
with an algorithm of choice, excluding the outer face. Denote this
graph as G1.
It is clear that we can add three more such vertices for the triangle
in O(n) time by computing extremal points of the vertex set. We
now pick one low-degree vertex, i.e. with ≤ c adjacent vertices,
with c being some constant which we will later find out. This
vertex will be removed with all its edges, and the resulting hole in
the triangulation will be retriangulated.

; ;

This leads to the next graph G2. A hierarchical decomposition of P is now composed of k such graphs
G1, ..., Gk. In each graph Gi, we augment the holes created from the vertex removal by storing which
triangles of the previous graph Gi−1 the hole embedded. It is important that the vertices chosen only have
constantly high degree, as otherwise the face number could increase in a higher bound.

Queries With one vertex removed each time, we could obtain up to k = n such graphs. Our goal is to
obtain k ∈ O(log n) many, such that the query time becomes logarithmic. Speaking of the query time, to
query a point p one has to start from Gk =: Gi, find the first hole that contains p. If that hole is part of the
original graph, the point location is finished. If not, move to Gi−1. This continues until the root condition
is satisfied.
To obtain logarithmically many such decisions, the idea is to remove several vertices of low degree each time.
For that, we will need some more observations on the structure of planar graphs.

1

Definition 1. For a given graph G = (V,E), a set of vertices U ⊆ V is called an independent set, if none of
the vertices are adjacent in G.

Lemma 1. Given a planar graph P = (V,E) with n := |V |, there are constants c ≥ 60 and 0 < α < 1, s.t.
there is an independent set of size αn with each vertex of degree < c.

Proof by Contradiction. We use a couple of facts: Planar graphs are 4-colorable, which can be done in O(n2)
time. But especially, planar graphs are 5-colorable in O(n) time. Also, for any planar graph with v vertices
and e edges it holds that e ≤ 3v − 6, which easily follows from Euler’s Theorem.
We find such a 5-coloring, and pick a color class U ∈ V with ≥ n

5 vertices, as there has to exists at least one
such class. The opposite would be a contradiction. Look at n

5 vertices of smallest degree.
Set α := 1

10 . From U , we pick n
10 many vertices of smallest degree. We claim that these vertices all have degree

< c := 60. Suppose the opposite, then the unpicked vertices would have a total degree of ≥ n
10 · 60 = 6n,

which corresponds to more than 3n edges inside the graph, as the coloring itself is an independent set. This
contradicts the result from above �. �

Complexity Consequences Observe that with the existence of the constants c and α, we can now
implement the algorithm. We now explore the complexity consequences of these results.
First, the size of the hierarchical decomposition. It is still open if k ∈ O(log n). For that, observe the
following:

• Vertex count of G1: n

• Vertex count of G2: n− αn = (1− α)n

• Vertex count of G3: (1− α)2n

• ...

• Vertex count of Gk: (1− α)k−1n = 3

In case of Gk, it is clear that the last graph will have a constant size, as the smallest remaining graph will
be the outer triangle of vertex count 3. We never remove any vertices of that outer triangle, of course. With
that in mind:

(1− α)k−1n = 3

log(n) + (k − 1) log(1− α) = log 3

⇒ k =
log(n)

log 1
1−α

− log 3

log 1− α
+ 1 ∈ O(log n)

As for the space usage, observe:

n︸︷︷︸
G1

+(1− α)n︸ ︷︷ ︸
G2

+(1− α)2n︸ ︷︷ ︸
G3

+...+ (1− α)k−1n︸ ︷︷ ︸
Gk

=

(
k−1∑
i=0

(1− α)i
)
n =

1− (1− α)k

1− (1− α)
n −→k→∞

n

α
∈ O(n)

Since k ∈ O(log n). With the previous assessment, we can also observe the preprocessing time:(
k−1∑
i=0

(1− α)i
)
n︸ ︷︷ ︸

Finding the independent set, removing vertices and retriangulating

= O(n)

The retriangulations take O(1) time for each hole, as they are of constant size, so even an inefficient trian-
gulation algorithm can be used there.

2

Appendix: Lowering the Constants We obtained α = 1
10 , c = 60 from above. We can minimize these

constants further by two ways:

1. Obvious improvement: Set c = 30 as we saw in the proof that 6n is way above 3n− 6 and thus we can
slightly shorten the c.

2. Use a 4-coloring instead of a 5-coloring, which can be obtained in O(n2) time. The runtime becomes
worse, so this shortening is not applicable to the algorithm above.

In the proof of the lemma, we now select n
8 vertices for our set. The contradiction n

8 · c = 3n leads to
the constants α = 1

8 , c = 24.

3

