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Notes on Quantum Algorithms for the Finite HSP

1 Introduction
Given a finite group (G, ◦) and a function f : G → X for some suitable set X with the property, that f |gH
is constant and f |gH = f |hH → g = h for g, h ∈ G, where H < G is an unknown subgroup. The problem of
finding a generator for H is called the Finite Hidden Subgroup Problem (Finite HSP, FHSP). In these notes,
we will review the generalization of the quantum algorithm for the Finite Abelian HSP to arbitrary finite
groups, also known as Quantum Fourier Sampling (QFS), and discuss its inefficiency regarding the issue of
classical reconstructibility. We will also review the information-theoretical quantum solution by Ettinger,
Hoyer and Knill. Let n,m, k ∈ N≥1 throughout.

2 Representation Theory
In the case of finite Abelian groups, we were able to employ a characterization theorem [1, pp. 132-135],
which allowed the use of qudit registers for storing elements. With this characterization theorem and with the
help of character theory, which in turn required the characterization1, it was possible to develop a quantum
Fourier transform for finite Abelian groups with useful properties relating to the notion of orthogonal group
subsets. Most of these steps required the commutativity of the group operation [2, pp. 17-20]. In the general
case, we shall assume for these notes an O(log2(|G|))-complex encoding of group elements as the canonical
basis elements of the Hilbert space C|G|. The quantum algorithm for general finite HSPs requires another
generalization of the QFT, based on representation theory, which is much different. We shall introduce the
necessary definitions and facts here quickly. The following presentation of facts follows [2, pp. 25-28].

Definition 1 ([2, pp. 25-26]). We define the following notions.
(i) A representation of a group G is a group homomorphism ρ : G → GL(Cdρ), dρ ∈ N. We denote the set
of all representations as P (G).
(ii) A subspace V ⊆ Cdρ is said to be invariant, if ρ(g)V ⊆ V for any g ∈ G.
(iii) If there are no invariant, nonzero and proper subspaces wrt. a representation ρ, then ρ is said to be
irreducible.

We can always choose the trivial representation g 7→ Edρ
for any g ∈ G, allowing a zero-dimensional

representation space, since any Cdρ would be invariant in that case, but requiring irreducibility forces a
proper non-trivial representation. In the following, when we speak of subspaces, we shall speak of subspaces
up to an embedding, i.e. when we reduce the general linear space for the values of a representation, we shall
still talk of the reduced spaces as subspaces of Cdρ .

Lemma 1 ([3, p. 6]). A representation ρ ∈ P (G) with an invariant subspace 0 6= V1 ⊂ Cdρ admits to an
invariant subspace 0 6= V2 ⊂ Cdρ with Cdρ = V1 ⊕ V2.

Corollary 2 (Decompositions of Representations). For a representation ρ ∈ P (G), there are invariant sub-
spaces V1, ..., Vk ⊆ Cdρ with irreducible representations ρi : G → GL(Vi) for any i ∈ [1, k]N, s.t. Cdρ =⊕k

i=1 Vi and ρ =
⊕k

i=1 ρi.

Note that we use the linear-algebraic direct sum
⊕

instead of the usual sums of sets and functions, meaning
that for a collection of bases {Bi ⊆ Vi}1≤i≤k,

∪k
i=1 Bi is a basis of Cdρ via a natural embedding of the

vectors of the subspaces. For ρ we look at the action of functions with this respect, giving the correctness of
notation here. This result can be strengthened even further to the following result.

Definition 2 ([2, p. 25]). Two representations ρ1, ρ2 ∈ P (G) are called isomorphic, if ∃ ϕ : Cdρ1 ↪→→ Cdρ2

with ρ1(g) = ρ2(g) ◦ ϕ ∀g ∈ G.

1See the definition of induced characteristics.
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Theorem 3 ([3, p. 7]). For any representation ρ ∈ P (G), there is a decomposition into invariant subspaces
V1, ..., Vk ⊆ C, unique up to isomorphism of distinct subgroups

Cdρ =

k⊕
i=1

V ⊕αi
i(1)

with α1, ..., αk ∈ N≥1 and ρ =
⊕k

i=1 ρ
⊕αi
i with ρi : G→ GL(Vi) being the respective irreducible representa-

tions.

The powers α1, ..., αk are used here to respect the fact that some spaces in a decomposition may be isomorphic.
Theorem 3 also gives the fact, that there is always a complete and finite set of irreducible representations,
i.e. one, s.t. the following decomposition is respected.

Lemma 4 ([3, p. 17]). For a representation ρ ∈ P (G) and a decomposition Cdρ =
⊕k

i=1 V
⊕αi
i with

{αi}1≤i≤k ⊆ N≥1 into invariant subspaces {Vi ⊆ Cdρ}1≤i≤k with irreducible representations respectively, we
have

|G| =
k∑

i=1

dim(Vi)
2.(2)

Note that α1, ..., αk not playing a role in the formula is not a contradiction2, as they mostly stem from
possibly too large of a dimension dρ.

Definition 3 ([2, p. 27]). Let G be a finite group, f : G→ C a function and ρ : G→ GL(Cdρ) with dρ ∈ N≥1

be an irreducible representation. Then the Fourier transform of f wrt. ρ (FT) is defined as

f̂(ρ) :=

√
dρ
|G|

∑
g∈G

f(g)ρ(g).(3)

This is the definition of the general Fourier transform presented in the literature. In these notes we will not
get deep into the intuition behind this definition besides a clear generalization wrt. the function values of
characteristics as factors from the quantum fourier transform for finite Abelian groups [2, p. 20].

To finish this section, we will go over how the general FT can be expressed as a unitary matrix, reproducing
[2, pp. 27-28]. We fix an ordering G = {g1, ..., g|G|} and vectorize the function f by identifying

vf := (f(g1), ..., f(g|G|)) ∈ C|G|.(4)

Take a complete set of irreducible representations and order it to P̂ ′(G) := {ρ1, ..., ρk}. Choose for each
representation a basis, s.t. f̂(ρi), 1 ≤ i ≤ k, is unitary. For that, we refer to [2, p. 28]. We set

vf̂ := (f̂(ρ1)11, f̂(ρ1)12, ..., f̂(ρm)dρmdρm
) ∈ C|G|(5)

due to Lemma 4. We further observe vf =
∑

g∈G f(g) |g〉. The transform then boilds down to the mapping
vf 7→ vf̂ , which leads to the following definition. Note, that we denote with |ρ, i, j〉 ∈ S(C|G|) the canonical
state describing the position (i, j) ∈ [1, dρ]

2
N wrt. some representation ρ ∈ P ′(G).

Definition 4. For a finite group G, the General Quantum Fourier Transform (QFT) is defined as

QFTG :=
∑
g∈G

∑
ρ∈P ′(G)

∑
1≤i,j≤dρ

√
dρ
|G|

ρ(g)ij |ρ, i, j〉〈g| .(6)

Lemma 5 ([2, pp. 27-28]). The map QFTG for any finite group G, if constructed as above, is a linear and
unitary map.

The citation for Lemma 5 is incomplete as it lacks the actual proof, but it gives the hint to look into [3].
DONE

2At least by intuition for the way it is written down in these notes here.
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3 The Generalized Finite Abelian HSP Algorithm
We now discuss the generalization of the quantum algorithm for solving finite Abelian HSPs. The procedure
is also called Quantum Fourier Sampling (QFS) in literature. We present the algorithm as a schema, since
in contrast to the aforementioned algorithm and the more general structure of non-Abelian groups we need
to leave out some steps. We further assume access to some Hadamard matrix HG ∈ U(|G|) with the action
|g1〉 7→ 1/

√
|G|
∑

g∈G |g〉, if g1 ∈ G is the neutral element.

Algorithm 1 Quantum Fourier Sampling Schema
Require: A finite group G in some order G = {g1, ..., g|G|}, with g1 being the neutral element, with an
O(log2(|G|))-complex representation in a C|G|-based quantum register, a complete set of irreducible
representations P ′(G); omitting isomorphy; a function f : G→ X hiding a subgroup H ≤ G as described
in Section 1 with X := {0, 1}x, x ∈ N≥1 and an oracle Uf ∈ C|G||X|×|G||X| with |g〉 |h〉 7→ |g〉 |h⊕ f(g)〉
for all g ∈ G,h ∈ X.

Ensure: A generator Γ ⊆ G for H.
1: |Φ〉 := (HG ⊗ E|X|) |g1〉 |0〉 ∈ S(C|G||X|)
2: |Φ〉 ← Uf |Φ〉
3: Measure |Φ〉 wrt. the observable {Span({|g〉 |x〉 | g ∈ G}) | x ∈ X} and observe an index x ∈ X.
4: Drop the second register of |Φ〉 =: |Ψ〉 |x〉 to obtain |Ψ〉 ∈ S(C|G|).
5: |Ψ〉 ← QFTG |Ψ〉
6: Measure |Ψ〉 wrt. the observable {Span({|ρ, i, j〉 | 1 ≤ i, j ≤ dρ}) | ρ ∈ P ′(G)} and observe a part of a

representation ρ ∈ P ′(G).
7: Collect some m representation parts {ρ′i}1≤i≤m and construct a generator Γ ⊆ H for H using them.
8: return Γ

We quickly compute the result of Algorithm 1. Steps 1 and 2 give the state

1√
|G|

∑
g∈G

|g〉 |f(g)〉 =

√
|H|
|G|

∑
c∈T

1√
|H|

∑
h∈H

|ch〉 |f(c)〉 ,(7)

where T ⊆ G is some transversal wrt. H, i.e. a set of representatives for the sets from the factor group
G/H. Measuring the second register and dropping it gives

1√
|H|

∑
h∈H

|ch〉(8)

for some c ∈ T . Applying QFTG then gives the state

∑
ρ∈P ′(G)

∑
1≤i,j≤dρ

√
dρ
|G||H|

(∑
h∈H

ρ(ch)

)
ij

|ρ, i, j〉 .(9)

Performing the measurement in step 6 then corresponds to measuring a part of a representation, as claimed.

The construction of QFTG and the construction of a generator of H from the representation parts are what
Lomont presents as some of the main theoretical issues with the description and complexity of this algorithm
[2, pp. 29-30]:
(1) The QFT must be efficiently implemented, which depends on multiple aspects. A complete set of
representations must be explicitely given, and that depends on the group. There are a lot of results on
existing groups, such as cyclic, symmetric, dihedral groups and others [2, p. 29] [4, pp. 3-4]. Furthermore,
the bases making the matrices of the irreducible representations in the complete set unitary can impact the
efficiency of the implementation, as the example for symmetric groups demonstrates [2, pp. 29-30].
(2) We obtain representation parts, from which we need to compute a generator for the hidden subgroup.
This is generally difficult, as the dihedral group demonstrates. A small introduction to the characterization
of subgroups of the dihedral group and some intuition on the hardness is given by one of the papers leading
to the best known algorithm for the dihedral HSP in [5], with the former on pp. 1-2.
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4 An Information-Theoretical Solution to the Finite HSP
Despite the issues of Algorithm 1, a different quantum algorithm has been found, which proves, that it is
information-theoretically possible to determine a hidden subgroup using a large quantum register with a
possibly exponential algorithm. Algorithm 2 is due to [6, pp. 2-3]. Wrt. the setting for the HSP algorithm
as in the input of Algorithm 1, denote with Uf,m the modified oracle

Uf,m ∈ C|G|m|X|m×|G|m|X|m , |g′1, ..., g′m〉 |x1, ..., xm〉 7→ |g′1, ..., g′m〉 |x1 ⊕ f(g1), ..., xm ⊕ f(g′m)〉 .(10)

Also denote for any G′ ⊆ G the state |G′〉 := 1/
√
|G′|

∑
g′∈G′ |g′〉 and for some K ≤ G and {bi}1≤i≤m ⊆ G

the ket |Ψ{bi}1≤i≤m

K 〉 :=
⊗m

i=1 |biK〉.

Algorithm 2 Information Theoretical HSP Solver
Require: A finite group G in some order G = {g1, ..., g|G|}, with g1 being the neutral element, with an
O(log2(|G|))-complex representation in a C|G|-based quantum register, a function f : G → X hiding a
subgroup H ≤ G as described in Section 1 with X := {0, 1}x, x ∈ N≥1 and an oracle Uf ∈ C|G||X|×|G||X|

with |g〉 |h〉 7→ |g〉 |h⊕ f(g)〉 for all g ∈ G,h ∈ X.
Ensure: A generator Γ ⊆ G for H.

1: Set m := 4 log2(|G|) + 2.
2: |Φ〉 := |g1〉⊗m |0〉⊗m ∈ S(C|G|m|X|m)
3: |Φ〉 ← (H⊗m

|G| ⊗ E⊗m
|X| ) |Φ〉

4: |Φ〉 ← Uf,m |Φ〉
5: Measure |Φ〉 wrt. the observable {Span({|g′1, ..., g′m〉 |x1, ..., xm〉 | g′1, ..., g′m ∈ G}) | x1, ..., xm ∈ X} and

observe an index X ′ ∈ Xm.
6: Drop the second register of |Φ〉 =: |Ψ〉 |X ′〉 to obtain |Ψ〉 ∈ S(C|G|m).
7: Γ := ∅
8: for i ∈ {1, ..., |G|} do
9: Let H⟨gi⟩ := Span({ |Ψ{bj}1≤j≤m

⟨gi⟩ 〉 | {bj}1≤j≤m ⊆ G}).
10: Measure |Ψ〉 wrt. the observable {H⟨gi⟩,H⊥

⟨gi⟩} and obtain an index z ∈ {0, 1} in this order.
11: if z = 0 then
12: Γ← Γ ∪ {gi}
13: return Γ

We quickly analyze this algorithm. The steps 1 to 6 give a state
m⊗
i=1

|aiH〉(11)

for some a1, ..., am ∈ G. Let P⟨gi⟩ be the canonical projector onto H⟨gi⟩ for any i ∈ [1,m]N and analogously
P⊥
⟨gi⟩ be the canonical projector onto H⊥

⟨gi⟩. We look at the measurement in step 10. Defining |Ψ0〉 := |Ψ〉
for the state in step 6, we can set unnormalized states

|Ψi〉 :=

{
P⟨gi⟩ |Ψi−1〉 gi ∈ H

P⊥
⟨gi⟩ |Ψi−1〉 gi 6= H

(12)

for any i ∈ [1, |G|]N. We then have the following Lemma.

Lemma 6 ([6, pp. 3-4]). For any i ∈ [1, |G|]N, it holds, that

〈Ψi|Ψi〉〉 ≥ 1− 2i

2m/2
≥ 1− 1

|G|
.(13)

We can summarize the result as a Theorem.

Theorem 7. Algorithm 2 solves the problem of determining a generator for an arbitrary FHSP using O(|G|)
measurements and O(log2(|G|)) oracle calls with a probability of at least 1− 1/|G|.
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Whilst the algorithm uses a subexponential number of oracle calls, the number of measurement it requires
lies between 1 and |G| with the minimal example being any cyclic group and the maximal example requiring
a group, s.t., e.g., every generator has O(|G|) elements. It could be improved by using characterizations of
generators of the group to systematically cross out group elements from the testing loop from step 8 to step
12, as suggested in [6, p. 3].

5 Some Further Notes
We further list some more intruiging results on these problems.
• Besides the reduction of the SVP to the DHSP, there is also a reduction of the graph isomorphism to the
symmetric HSP, see [2, pp. 61-64].
• Gogioso and Kissinger [7] have modelled the quantum algorithm for Finite Abelian HSPs using abstract
diagrams and proved the correctness. Figure (5.2) in [7, p. 12] illustrates the main proof diagram. Some
notes on infinite HSPs, which may get attacked in the future by quantum computers under employment of
quantum states modelled using infinite-dimensional Hilbert spaces such as L2(R), can also be found [7, p.
19].
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