Presentation Handout on: Measure Decomposition Theorems

For this presentation, we used mainly [1, pp. 71-76, pp. 113-118], but also [1] as a whole and [2, 3].

1 Decomposition Theorems for Measures

Throughout this document, assume that (X, \mathfrak{M}) is a measurable space.

Definition 1.1. Let $\mu, \nu: \mathfrak{M} \to [0, \infty]$ be two measures. We define the following three set functions:

(1)
$$\nu_{ac} \colon \mathfrak{M} \to [0,\infty], E \mapsto \max\left\{ \int_E u \, d\mu \, \middle| \, u \colon X \to [0,\infty] \text{ measurable} \land \int_{E'} u \, d\mu \le \nu(E') \, \forall \, \mathfrak{M} \ni E' \subseteq E \right\}$$

 $(2) \qquad \nu_{s}\colon \mathfrak{M} \to [0,\infty], E \mapsto \max\{\nu(E') \mid \mathfrak{M} \ni E' \subseteq E, \mu(E') = 0\}$

 $(3) \quad \nu_{d} \colon \mathfrak{M} \to [0,\infty], E \mapsto \max\{\nu(E') \mid \mathfrak{M} \ni E' \subseteq E, \mu(E'') = \infty \,\forall \, \mathfrak{M} \in E'' \subseteq E', \nu(E'') > 0\}$

Theorem 1 (Lebesgue Decomposition Theorem). Let $\mu, \nu \colon \mathfrak{M} \to [0, \infty]$ be two measures and μ σ -finite.

(i) Then

(4)
$$\nu = \nu_{ac} + \nu_s.$$

(ii) If ν is σ -finite, then $\nu_s \perp \mu$ and the decomposition is unique.

Theorem 2 (De Giorgis Theorem). Let $\mu, \nu \colon \mathfrak{M} \to [0, \infty]$ be two measures. Then

(5)
$$\nu = \nu_{ac} + \nu_s + \nu_d.$$

2 Decomposition Theorems for Signed Measures

Let $\lambda: \mathfrak{M} \to [-\infty, \infty]$ be a signed measure.

Lemma 2.1. Let $E \in \mathfrak{M}$ with $\lambda(E) \in (0, \infty)$. Then there exists a positive $\mathfrak{M} \ni F \subseteq E$.

Theorem 2 (Hahn Decomposition Theorem). Any measurable space (X, \mathfrak{M}) can be decomposed as $X = X^+ \cup X^-$, where $X^+ \subseteq X$ is positive and $X^- \subseteq X$ is negative.

Theorem 3 (Jordan Decomposition Theorem). There exists a unique pair (λ^+, λ^-) of measures with $\lambda^+ \perp \lambda^-$, one being finite and $\lambda = \lambda^+ - \lambda^-$.

Theorem 4 (Signed Lebesgue Decomposition Theorem). Let $\lambda \colon \mathfrak{M} \to [-\infty, \infty]$ be a signed measure and $\mu \colon \mathfrak{M} \to [0, \infty]$ be a σ -finite measure.

(i) There are signed measures $\lambda_{ac}, \lambda_s \colon X \to [-\infty, \infty]$ and a measurable function $u \colon X \to [-\infty, \infty]$ with

(6)
$$\lambda = \lambda_{ac} + \lambda_s, \lambda_{ac} \ll \mu \text{ and } \lambda_{ac}(\cdot) = \int_{\cdot} u \, d\mu.$$

(ii) If λ is σ -finite, then $\lambda_s \perp \mu$ and the decomposition is unique.

Decomposition	Summary
Hewitt-Yosida [1, pp. 8-9]	$\mu = \mu_p + \mu_c$
Atomic [1, pp. 13-16]	$\mu = \mu_1 + \mu_2$
Lebesgue	$\nu = \nu_{ac} + \nu_s$
De Giorgi	$\nu = \nu_{ac} + \nu_s + \nu_d$
Hahn	$X = X^+ \cup X^-$
Jordan	$\lambda = \lambda^+ - \lambda^-$
Signed Lebesgue	$\lambda = \lambda_{ac} + \lambda_s$

References

- [1] I. Fonseca and G. Leoni, Modern methods in the calculus of variations, ISBN: 978-0-387-35784-3.
- [2] S. J. Axler, Measure, integration & real analysis, ISBN: 978-3-030-33142-9.
- [3] J. Elstrodt, Ed., Maß- und Integrationstheorie, ISBN: 978-3-540-89727-9.