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Presentation Notes on: Measure Decomposition Theorems The general aim of this presentation is
to discuss decomposition theorems for measures. Decomposition is an often occuring pattern in mathematics,
as it makes objects easier to grasp and compare with one another. Almost all of the contents of these notes
can be found in [1, pp. 71-76, pp. 113-118]. Throughout this document, assume that (X,M) is a measurable
space. We quickly recall the major result of the first presentation on the comparison of measures, the
Radon-Nikodym theorem, here in the less general version.

Theorem 0.1 (Radon-Nikodym I [1, pp. 56-59]). Let µ, ν : M → [0,∞] be two measures with µ σ-finite
and ν � µ. Then there is a measurable u : X → [0,∞] with

ν(·) =
∫
·
u dµ,(0.1)

which is unique up to a set of µ-measure zero.

We will use this result later.

1 Decomposition Theorems for Measures

1.1 Auxiliary Measures We recall the following definitions.

Definition 1.1 ([1, p. 55]). Let µ, ν : M → [0,∞] be two measures.
(i) ν is said to be absolutely continuous wrt. µ, ν � µ, if for any E ∈ M, µ(E) = 0 → ν(E) = 0.
(ii) µ, ν are said to be mutually singular, ν ⊥ µ, if there are disjoint Xµ, Xν ∈ M with X = Xµ ∪Xν and
µ(E) = µ(E ∩Xµ), as well as ν(E) = ν(E ∩Xν) for any E ∈ M.
(iii) ν is said to be diffuse wrt. µ, if for any E ∈ M, µ(E) < ∞ → ν(E) = 0.

Recall the motivation for the definition of absolute continuity: If ν � µ, then

lim
µ(E)→0

ν(E) = 0(1.2)

with the formal statement on [1, pp. 55-56]. Mutual singularity relates to the abiliy to single out the
actions of each measure on parts of a partition, similar to how the action of a matrix can be separated by
considering the action on each subspace induced by a single basis element. Diffuseness relates to µ diffusing
the zeroing-actions of ν, thus, the order of ν and µ should be switched in the definition, but it is convention
to keep it this way. Further recall, that we can also write the equations in Definition 1.1 (ii) as

µ = µ|Xµ
and ν = ν|Xν

(1.3)

by invoking the standard notation for restricting a measure by cutting a given set before the measurement.

Based on these three definitions, we introduce three auxiliary measures for any given measure.

Definition 1.2. Let µ, ν : M → [0,∞] be two measures. We define the following three set functions:

νac : M → [0,∞], E 7→ max
{∫

E

u dµ

∣∣∣∣u : X → [0,∞] measurable ∧
∫
E′

u dµ ≤ ν(E′) ∀M 3 E′ ⊆ E

}
(1.4)

νs : M → [0,∞], E 7→ max{ν(E′) | M 3 E′ ⊆ E, µ(E′) = 0}(1.5)
νd : M → [0,∞], E 7→ max{ν(E′) | M 3 E′ ⊆ E, µ(E′′) = ∞∀M ∈ E′′ ⊆ E′, ν(E′′) > 0}(1.6)

The indices ac, s and d refer to absolutely continuous, singular and diffuse, respectively. The function νac
has been used in the previous presentation on the comparison of measures as a tool for proving Theorem 0.1.
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Lemma 1.1 ([1, pp. 13-14]). Let µ : M → [0,∞] be a measure, N ⊆ M be closed under finite unions
and ∅ ∈ N. Then

ν : M → [0,∞], E 7→ max{µ(E ∩ F ) | F ∈ N}(1.7)
is well-defined and a measure.

Lemma 1.2. The following statements hold.
(i) νac, νs and νd are well-defined and measures.
(ii) νac � µ.
(iii) If νs is σ-finite, then there exists some Xs ∈ M, s.t.

µ(Xs) = 0 = νd(Xs) and νs(E) = ν(E ∩Xs)(1.8)
for all E ∈ M. Also, νs ⊥ µ and νs ⊥ νd.
(iv) νd is diffuse wrt. µ.

Proof. (i) (ii) As for the properties of νac mentioned, we should have discussed them in a previous presen-
tation, so we do not do this here again. See [1, pp. 56-59] for the proofs. For the record, we recall the
general idea: νac(∅) = 0 follows from the definition and the σ-additivity can be shown directly using the
definition and the supremum. The well-definedness is then shown by constructing an increasing sequence
of measurable functions {un : X → [0,∞]}n∈N≥1

using the definition of νac and employing the Lebesgue
monotone convergence theorem.
(i) Observe by definition, that for any E ∈ M,

νs(E) = max{ν(E ∩ F ) | F ∈ N}(1.9)
with N := {F ∈ M | µ(F ) = 0}. Applying Lemma 1.1 gives the statement, including the well-definedness.
We have similarly, that

νd(E) = max{ν(E ∩ F ) | F ∈ N}(1.10)
for N := {F ∈ M | µ(F ′) = ∞∀M ∈ F ′ ⊆ F, ν(F ′) > 0}. Observe, that for F, F ′ ∈ N, M 3 F ′′ ⊆ F ∪ F ′

with ν(F ′′) > 0 and wlog. ν(F ′′) ≥ ν(F ′′ ∩ F ) > 0, µ(F ′′) ≥ µ(F ′′ ∩ F ) = ∞. The other possible cases are
analogous. Applying Lemma 1.1 again gives the statement.
(iii) We first consider the case, that νs is finite. Choose Xs ∈ M with

νs(X) = ν(Xs) and µ(Xs) = 0 → νd(Xs) = 0.(1.11)
Let E ∈ M and M 3 Es ⊆ E be with

νs(E) = ν(Es) and µ(Es) = 0 → νd(Es) = 0.(1.12)
We claim, that ν(Es \Xs) = 0. If not, considering the definition of νs and since it is finite, we would have

νs(X) ≥ ν(Es ∪Xs) = ν(Xs) + ν(Es \Xs) > ν(Xs) �.(1.13)
On the other hand, we thus have

νs(E) = ν(Es) = ν(Es ∩Xs) + ν(Es \Xs) = ν(Es ∩Xs) ≤ ν(E ∩Xs) ≤ νs(E ∩Xs) ≤ νs(E)(1.14)
because of µ(Xs) = 0.

The previous argument has shown, that νs = νs|Xs
. By definition, this then also concludes νs ⊥ µ and

νs ⊥ νd, as we can pick Xµ := Xνd
:= X \Xs.

As for the case when νs is σ-finite, let

(Xn ∈ M)n∈N≥1
be with X =

⋃
n∈N≥1

Xn and νs(Xn) < ∞∀n ∈ N≥1.(1.15)

Also let
(Xn,s ∈ M)n∈N≥1

be with νs(Xn) = ν(Xn,s) ∀n ∈ N≥1.(1.16)
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Fix some n ∈ N≥1. Since νs|Xn is finite, we can repeat the same argument as in the finite case to obtain
νs|Xn = νs|Xn,s and then pick Xs :=

⋃
n∈N≥1

Xn,s to obtain the statement.
(iv) Let E ∈ M with µ(E) < ∞, then νd(E) = max ∅ = 0, giving that νd is diffuse wrt. µ. ■

1.2 The Lebesgue Decomposition Theorem We consider the first main decomposition theorem. The
first auxiliary lemma stems from the proof of the Radon-Nikodym theorem.

Lemma 1.3 ([1, p. 56, 64]). Let µ, ν : M → [0,∞] be measures with µ σ-finite and ν � µ. Then
ν = νac.

Theorem 1.4 (Lebesgue Decomposition Theorem). Let µ, ν : M → [0,∞] be two measures and µ σ-finite.
(i) Then

ν = νac + νs.(1.17)

(ii) If ν is σ-finite, then νs ⊥ µ and the decomposition is unique.

Proof. (i) Fix E ∈ M and let M 3 Es ⊆ E with νs(E) = ν(Es) and µ(Es) = 0.

Case 1. ν(Es) = ∞. Then we are done, as both sides become infinity.

Case 2. ν(Es) < ∞. We claim, that ν|E\Es
� µ|E\Es

. Let F ∈ M with µ|E\Es
(F ) = µ(F ∩ (E \ Es)) = 0.

Wlog. consider F ′ := F ∩ (E \ Es), as µ|E\Es
(F ) = µ|E\Es

(F ′) = 0. Especially, F ′ ⊆ E \ Es. Suppose for
contradiction, that ν(F ′) > 0. Then

∞ > νs(E) = ν(Es) ≥ ν(F ′ ∪ Es) = ν(F ′) + ν(Es) > ν(Es) = νs(E) �.(1.18)

This proves ν|E\Es
(F ) = 0 and thus ν|E\Es

� µ|E\Es
. Now consider

ν(E \ Es) = ν|E\Es
(E \ Es) = (ν|E\Es

)ac(E \ Es) = νac(E \ Es) = νac(E),(1.19)

using Lemma 1.3 and where in the last equality, we used the fact that µ(Es) = 0 and νac � µ. In total,

ν(E) = ν(E \ Es) + ν(Es) = νac(E) + νs(E),(1.20)

giving the statement.
(ii) Since ν is σ-finite, νs is also σ-finite, as νs ≤ ν. Thus, νs ⊥ µ by Lemma 1.2 (iii). As for the uniqueness,
suppose for contradiction, that there are measures ν̄ac, ν̄s : M → [0,∞] with

ν = νac + νs = ν̄ac + ν̄s,(1.21)

ν̄ac � µ and ν̄s ⊥ µ. Let Xν̄s
∈ M with ν̄s = ν̄s|Xν̄s

and µ(Xν̄s
) = 0. Especially, ν̄s|X\Xν̄s

= 0. So

ν|X\Xν̄s
= ν̄ac|X\Xν̄s

� µ|X\Xν̄s
,(1.22)

from which we get with Lemma 1.3, that

ν̄ac(E) = ν̄ac(E \Xν̄s
) = ν̄ac|X\Xν̄s

(E) = νX\Xν̄s
(E) = (ν|E\Xν̄s

)ac(E) = νac(E \Xν̄s
) = νac(E)(1.23)

for any E ∈ M. In the case that ν is finite, it is thus implied, that νs = ν̄s. If ν is σ-finite, then let
(Xn ∈ M)n∈N≥1

be sets with

X =
⋃

n∈N≥1

Xn and ν(Xn) < ∞∀n ∈ N≥1.(1.24)

Then νs|Xn = ν̄s|Xn ∀n ∈ N≥1 by the same argument as in the finite case, giving the statement. ■
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1.3 De Giorgis Theorem De Giorgis theorem provides an adaption of the Lebesgue decomposition
theorem in the case, that µ is not σ-finite.

Theorem 1.5 (De Giorgis Theorem). Let µ, ν : M → [0,∞] be two measures. Then

ν = νac + νs + νd.(1.25)

Due to time constraints, we will not perform the full proof here, but we will give the general sketch by
reduction to the Lebesgue decomposition theorem.

Proof Sketch. We invoke Lemma 1.2 (i) for a measurable u : M → [0,∞] and an Es ∈ M with

νac =

∫
·
u dµ, νs = ν|Es

and µ(Es) = 0,(1.26)

which implies νac(Es) = νd(Es) = 0. By probing for supp(νac|E\Es
), as illustrated in Figure 1, we can obtain

a set Eac ∈ M with νs(Eac) = νd(Eac) = 0. The Lebesgue decomposition theorem then, as µ is finite over
Eac, gives

ν(Eac) = νac(Eac) = νac(E).(1.27)

Since

ν(E) = νac(E) + νs(E) + ν(E \ (Eac ∪ Es))(1.28)

for any E ∈ M, it is left to prove that the inequality νd ≤ ν(E \ (Eac ∪ Es)) is not strict, which can be
achieved by a short argument using the definition of νd and, again, the Lebesgue decomposition theorem.
The partition found is also illustrated in Figure 2. ■

u

1

3

1

2

1

0
X

supp(u) supp(u)

Figure 1. Schematic illustration on how to probe for the support in the proof of De Giorgis
theorem: We construct the support by subsequently finding the points x ∈ X with u(x) ≥
1/n for n ∈ N≥1.

2 Decomposition Theorems for Signed Measures In the same manner as for general measures, we
can study decompositions of signed measures.
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Eac

�

E

0 Es

�d = 0

�s = 0

�d = 0

�ac = 0 �s = 0

�ac = 0

Ed

Figure 2. General illustration of the partition found in the proof of De Giorgis theorem.

2.1 Signed Measures

Definition 2.1. A function λ : M → [−∞,∞] is called a signed measure, if:
(i) λ(∅) = 0
(ii) |{−∞,∞} ∩ im(λ)| ≤ 1
(iii) For any mutually disjoint family {En ⊆ M}n∈N≥1

, we have λ (
⋃∞

n=1 En) =
∑∞

n=1 λ(En).

In the following, λ will denote a signed measure according to Definition 2.1. Consider the following charac-
terization.

Lemma 2.1. A set function λ : M → [−∞,∞] is a signed measure, iff it satisfies the following:
(i) |{−∞,∞} ∩ im(λ)| ≤ 1
(ii) λ(E ∪ F ) = λ(E) + λ(F ) for disjoint E,F ∈ M.
(iii) For any increasing sequence {En ⊆ M}n∈N≥1

, we have λ (
⋃∞

n=1 En) = limn→∞ λ(En).

Proof. (⇒) We only have to consider the third point. Let {En ∈ M}n∈N≥1
be an increasing sequence. Set

F1 := E1 and

Fn := En \ En−1(2.29)

for n ∈ N≥2. Then

λ

( ∞⋃
n=1

En

)
= λ

( ∞⋃
n=1

Fn

)
=

∞∑
n=1

λ(Fn) = lim
n→∞

n∑
i=1

λ(Fi) = lim
n→∞

λ

(
n⋃

i=1

Fi

)
= lim

n→∞
λ(En).(2.30)

(⇐) We first have λ(∅) = λ(∅ ∪ ∅) = 2λ(∅), from which we get λ(∅) = 0. Second, let {Fn}n∈N≥1
⊆ M be

some mutually disjoint family. Define for any n ∈ N≥1

En :=

n⋃
k=1

Fk.(2.31)

Then we have

λ

( ∞⋃
k=1

Fk

)
= λ

( ∞⋃
n=1

En

)
= lim

n→∞
λ(En) = lim

n→∞

n∑
k=1

λ(Fk) =

∞∑
k=1

λ(Fk).(2.32)

■

2.2 Positive/Negative Sets and the Hahn Decomposition Theorem

Definition 2.2. A set E ∈ M is called positive, if λ(F ) ≥ 0, and resp. negative, if λ(F ) ≤ 0, for all
M 3 F ⊆ E.
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We wish to prove a finiteness lemma for proving the existence of a positive subset. We then follow these
lemmas up with the first decomposition theorem for signed measures, which directly connects to the notion
of positive and negative sets.

Lemma 2.2. Let E ∈ M with |λ(E)| < ∞. Then for any M 3 F ⊆ E, |λ(F )| < ∞.

Proof. Wlog. suppose im(λ) ⊆ [−∞,∞), where the other case is analogous. If λ(F ) ≥ 0, we are done. Else,
0 < −λ(F ) = −(λ(E \ F ) + λ(F )− λ(E \ F )) = λ(E \ F )− λ(E) < ∞,(2.33)

where the latter inequality comes from the fact, that ∞ /∈ im(λ) and |λ(E)| < ∞, giving the statement. ■

Lemma 2.3 ([1, pp. 59-60]). Let µ : M → [0,∞) be a finite measure. Define:
µ+ : M → [0,∞), E 7→ sup{µ(E′) | M 3 E′ ⊆ E}(2.34)

(i) µ+ is well-defined and a measure.
(ii) For any E ∈ M, we have:

µ+(E) = sup{µ(E′) | M 3 E′ ⊆ E, (−µ)+(E′) = 0}(2.35)

For the sake of time, as its proof is quite long and rather tedious, we skip the proof of Lemma 2.3. In the
following, we adapt the restriction notation for measures to signed measures: If E ∈ M and λ : M → [−∞,∞]
is a signed measure, then λ|E : M|E → [−∞,∞], F 7→ λ(F ∩ E) is a natural signed measure.

Lemma 2.4. Let E ∈ M with λ(E) ∈ (0,∞). Then there exists a positive M 3 F ⊆ E.

Proof. By Lemma 2.2, λ|E is finite. Define:
λ+ : M|E → [0,∞), F 7→ sup{λ(F ′) | M 3 F ′ ⊆ F}(2.36)
λ− : M|E → [0,∞), F 7→ − inf{λ(F ′) | M 3 F ′ ⊆ F}(2.37)

Then by Lemma 2.3, λ+ and λ− are finite measures. Furthermore, since
λ+(E) = sup{λ(E′) | M 3 E′ ⊆ E, λ−(E

′) = 0}(2.38)
= sup{λ(E′) | M 3 E′ ⊆ E,E′ positive}(2.39)

and λ(E) ∈ (0,∞), there exists a positive subset E′ ⊆ E, giving the statement. ■

Theorem 2.5 (Hahn Decomposition Theorem). Any measurable space (X,M) can be decomposed as X =
X+ ∪X−, where X+ ⊆ X is positive and X− ⊆ X is negative.

Proof. Wlog. suppose im(λ) ⊆ [−∞,∞). Let
Ξ := sup{λ(E) | E ∈ M positive}.(2.40)

As this is a supremum, we may take a sequence (E′
n ∈ M)n∈N≥1

with limn→∞ λ(E′
n) = Ξ and define

(En :=
⋃n

m=1 E
′
m)n∈N≥1

to be its canonical associated increasing sequence of positive sets, also fulfilling
lim
n→∞

λ(En) = Ξ.(2.41)

Define

X+ :=

∞⋃
n=1

En.(2.42)

Then X+ is positive by definition and
λ(X+) = lim

n→∞
λ(En) = Ξ,(2.43)

because of Lemma 2.1. We claim, that X− := X \ X+ is negative. If not, then there is an M 3 F ⊆ X−

with λ(F ) ∈ (0,∞). By Lemma 2.4, there is a positive M 3 F ′ ⊆ F with λ(F ′) > 0, but then
Ξ = λ(X+) < λ(X+) + λ(F ′) = λ(X+ ∪ F ′) < ∞,(2.44)
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thus Ξ < λ(X+ ∪ F ′), although F ′ is positive �. The proof can be done analogously for the case λ(X) ⊆
(−∞,∞] by first constructing X− using negativity and then proceeding analogously. ■
We may interpret Theorem 2.5 as a decomposition of a signed measure, as the theorem gives the possibility
of decomposing a space wrt. the action of a signed measure. Elstrodt [2, p. 271] gives the interpretation of
the Hahn decomposition as a differentiation between the charges of λ over X, as depicted in Figure 3.

X+

X
�

�

X

0

Figure 3. Schematic Illustration of the Hahn decomposition theorem.

Remark 2.6. In general, the Hahn decomposition is not unique. Let X = [−1, 1], M = B([−1, 1]) and

λ(E) :=

∫
E

x dx for E ∈ M.(2.45)

Then ([0, 1], [−1, 0)) and ((0, 1], [−1, 0]) are both Hahn decompositions of X.
2.3 The Jordan and Lebesgue Decomposition Theorems Using Hahn decomposition theorem to
decompose the action of λ wrt. X+ and X−, we arrive at the following result.
Theorem 2.7 (Jordan Decomposition Theorem). There exists a unique pair (λ+, λ−) of measures with
λ+ ⊥ λ−, one being finite and λ = λ+ − λ−.
Proof. Apply Theorem 2.5 on X to obtain (X+, X−) and set the restriction measures λ+ := λ|X+ and
λ− := −λ|X− . By construction, λ+ ⊥ λ− and λ = λ+ − λ−. As for the uniqueness, we use the argument
given by Axler [3, p. 269]: We have λ = λ+ − λ− and |λ| = λ+ + λ−, giving

λ+ =
|λ|+ λ

2
and λ− =

|λ| − λ

2
,(2.46)

so λ+ and λ− are uniquely determined by λ itself. ■
Remark 2.8 (Justification of the Lebesgue Integral). In light of the Jordan decomposition theorem, we can
give a more abstract justification for the definition of the Lebesgue integral: Let u : X → [−∞,∞] be a
measurable function and E ∈ M. If either

∫
E
u dλ+ or

∫
E
u dλ− is finite, then we can define the Lebesgue

integral as ∫
E

u dλ :=

∫
E

u dλ+ −
∫
E

u dλ−(2.47)

in the same manner as if we were to Jordan decompose the signed measure E 7→
∫
E
u dλ, in case of u being

Lebesgue integrable.
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For the following, we generalize some of the basic definitions seen in Definition 1.1 directly to signed measures.

Definition 2.3. Let (λ+, λ−), (ς+, ς−) be the Jordan decompositions of signed measures λ, ς : X → [−∞,∞].
(i) λ is said to be absolutely continuous wrt. ς, written λ � ς, if λ+ + λ− � ς+ + ς−.
(ii) λ and ς are said to be mutually singular, written λ ⊥ ς, if λ+ + λ− ⊥ ς+ + ς−.

The culmination of the decomposition theorems presented lies in the following theorem.

Theorem 2.9 (Signed Lebesgue Decomposition Theorem). Let λ : M → [−∞,∞] be a signed measure and
µ : M → [0,∞] be a σ-finite measure.
(i) There are signed measures λac, λs : X → [−∞,∞] and a measurable function u : X → [−∞,∞] with

λ = λac + λs,(2.48)
λac � µ and

λac(·) =
∫
·
u dµ.(2.49)

(ii) If λ is σ-finite, then λs ⊥ µ and the decomposition is unique.

We recall, that the measurability of u is to be understood wrt. the associated canonical Borel algebra of
[−∞,∞].

Proof. (i) Apply Theorem 2.7 and Theorem 1.4 twice to obtain
λ = λ+ + λ−, λ+ = λ+

ac + λ+
s and λ− = λ−

ac + λ−
s(2.50)

with λ+
ac, λ

−
ac � µ. Applying Theorem 0.1 twice then gives measurable u+, u− : X → [0,∞] with

λ+
ac(·) =

∫
·
u+ dµ and λ−

ac(·) =
∫
·
u− dµ.(2.51)

Either λ+ or λ− or none are finite, so we can define
λac := λ+

ac − λ−
ac, λs := λ+

s − λ−
s and u := u+ − u−,(2.52)

the first two of which are signed measures. Especially, λac � µ and if λ is positive, so are λac and λs by
construction. This gives the statement.
(ii) The singularity and uniqueness follows from the construction in (i). ■

3 Summary
For the end of these notes, we summarize some major decomposition theorems in [1, pp. 1-119], including
those discussed. Here, µp denotes a purely finitely additive measure [1, p. 8], µc denotes a countably additive
measure [1, p. 5] and µ1 and µ2 denote atomatic and non-atomic measures [1, p. 10].

Decomposition Summary
Hewitt-Yosida [1, pp. 8-9] µ = µp + µc

Atomic [1, pp. 13-16] µ = µ1 + µ2

Lebesgue ν = νac + νs
De Giorgi ν = νac + νs + νd

Hahn X = X+ ∪X−

Jordan λ = λ+ − λ−

Signed Lebesgue λ = λac + λs
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