
Presentation Notes on: Measure Decomposition
Theorems

valentinpi

Seminar on Measure and Integration Theory
Freie Universität Berlin
Winter Term 2024-25

February 18, 2025



Recap

Let (X,M) be a measurable space throughout.

So far:
Theorem 1 (Radon-Nikodym I [1, pp. 56-59])
Let µ, ν : M → [0,∞] be two measures with µ σ-finite and ν � µ. Then
there is a measurable u : X → [0,∞] with

ν(·) =
∫
·

u dµ, (1)

which is unique up to a set of µ-measure zero.

Today: More decomposition theorems.
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Recap II
Definition 2 ([1, p. 55])
Let µ, ν : M → [0,∞] be two measures.
(i) ν is said to be absolutely continuous wrt. µ, ν � µ, if for any E ∈ M,
µ(E) = 0 → ν(E) = 0.
(ii) µ, ν are said to be mutually singular, ν ⊥ µ, if there are disjoint
Xµ,Xν ∈ M with X = Xµ ∪ Xν and µ(E) = µ(E ∩ Xµ), as well as ν(E) =
ν(E ∩ Xν) for any E ∈ M.
(iii) ν is said to be diffuse wrt. µ, if for any E ∈ M, µ(E) < ∞ → ν(E) = 0.
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Auxiliary Functions I

Definition 3
Let µ, ν : M → [0,∞] be two measures. We define the following three set
functions:

νac : M → [0,∞], E 7→ max

{∫
E

u dµ
∣∣∣∣ u : X → [0,∞] measurable ∧

∫
E′

u dµ ≤ ν(E′) ∀M 3 E′ ⊆ E
}

(2)
νs : M → [0,∞], E 7→ max{ν(E′) | M 3 E′ ⊆ E, µ(E′) = 0} (3)
νd : M → [0,∞], E 7→ max{ν(E′) | M 3 E′ ⊆ E, µ(E′′) = ∞∀M ∈ E′′ ⊆ E′

, ν(E′′) > 0}
(4)



Auxiliary Functions II
Lemma 4
The following statements hold.
(i) νac, νs and νd are well-defined and measures.
(ii) νac � µ.
(iii) If νs is σ-finite, then there exists some Xs ∈ M, s.t.

µ(Xs) = 0 = νd(Xs) and νs(E) = ν(E ∩ Xs) (5)

for all E ∈ M. Also, νs ⊥ µ and νs ⊥ νd.
(iv) νd is diffuse wrt. µ.

Lemma 5 ([1, pp. 13-14])
Let µ : M → [0,∞] be a measure, N ⊆ M be closed under finite unions
and ∅ ∈ N. Then

ν : M → [0,∞],E 7→ max{µ(E ∩ F) | F ∈ N} (6)

is well-defined and a measure.
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Lebesgue Decomposition

Theorem 6 (Lebesgue Decomposition Theorem)
Let µ, ν : M → [0,∞] be two measures and µ σ-finite.
(i) Then

ν = νac + νs. (7)

(ii) If ν is σ-finite, then νs ⊥ µ and the decomposition is unique.

Lemma 7 ([1, p. 56, 64])
Let µ, ν : M → [0,∞] be measures with µ σ-finite and ν � µ. Then
ν = νac.
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De Giorgis Theorem

; Lebesgue for non-σ-finite µ.

Theorem 8 (De Giorgis Theorem)
Let µ, ν : M → [0,∞] be two measures. Then

ν = νac + νs + νd. (8)
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De Giorgis Theorem: Proof Strategy I
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De Giorgis Theorem: Proof Strategy II
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Signed Measures

Definition 9
A function λ : M → [−∞,∞] is called a signed measure, if:
(i) λ(∅) = 0
(ii) |{−∞,∞} ∩ im(λ)| ≤ 1
(iii) For any mutually disjoint family {En ⊆ M}n∈N≥1 , we have

λ (
∪∞

n=1 En) =
∑∞

n=1 λ(En).

Lemma 10
A set function λ : M → [−∞,∞] is a signed measure, iff it satisfies the
following:
(i) |{−∞,∞} ∩ im(λ)| ≤ 1
(ii) λ(E ∪ F) = λ(E) + λ(F) for disjoint E,F ∈ M.
(iii) For any increasing sequence {En ⊆ M}n∈N≥1 , we have λ (

∪∞
n=1 En) =

limn→∞ λ(En).
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Positive Sets

Definition 11
A set E ∈ M is called positive, if λ(F) ≥ 0, and resp. negative, if
λ(F) ≤ 0, for all M 3 F ⊆ E.

Lemma 12
Let E ∈ M with λ(E) ∈ (0,∞). Then there exists a positive M 3 F ⊆ E.
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Hahn Decomposition

Theorem 13 (Hahn Decomposition Theorem)
Any measurable space (X,M) can be decomposed as X = X+ ∪ X−,
where X+ ⊆ X is positive and X− ⊆ X is negative.
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Jordan Decomposition

Theorem 14 (Jordan Decomposition Theorem)
There exists a unique pair (λ+, λ−) of measures with λ+ ⊥ λ−, one
being finite and λ = λ+ − λ−.

; Lebesgue integral definition.
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Signed Lebesgue Decomposition

„Culmination Theorem“.
Theorem 15 (Signed Lebesgue Decomposition Theorem)
Let λ : M → [−∞,∞] be a signed measure and µ : M → [0,∞] be a
σ-finite measure.
(i) There are signed measures λac, λs : X → [−∞,∞] and a measurable
function u : X → [−∞,∞] with

λ = λac + λs, (9)

λac � µ and

λac(·) =
∫
·
u dµ. (10)

(ii) If λ is σ-finite, then λs ⊥ µ and the decomposition is unique.



Summary

Decomposition Summary
Hewitt-Yosida [1, pp. 8-9] µ = µp + µc

Atomic [1, pp. 13-16] µ = µ1 + µ2
Lebesgue ν = νac + νs
De Giorgi ν = νac + νs + νd

Hahn X = X+ ∪ X−

Jordan λ = λ+ − λ−

Signed Lebesgue λ = λac + λs
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