
Seminar on Online Algorithms valentinpi
Freie Universität Berlin May 2, 2023
Summer Term 2023

Presentation Notes on: Metrical Task Systems and the Work Function Algorithm
We present an abstract model for the competitive analysis of online algorithms, discuss a general solution
algorithm and state some bounds for specific problems.

Preliminaries We shall first recall the definition of a metric.
Definition 1 ([1, pp. 3-4]). Let M be a set. A metric is a map d : M×M → R with the following properties
for any x, y, z ∈ M:

(i) d(x, y) = 0 ↔ x = y
(ii) d(x, y) = d(y, x) (Symmetry)
(iii) d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

A tuple (M, d) is called a metric space.
An immediate consequence of this definition is the positivity of d, as it is trivial for an empty metric space
and for a nonempty one, we have 0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y) for x, y ∈ M. Furthermore,
when denoting a metric space, we usually omit the symbol for the metric and just write M. To simplify the
notation, let xy := d(x, y). It is important to note that metric spaces abstract the notion of a distance and
that these spaces can be finite.

Metrical Task Systems The basic premise in online algorithm design is, that the full input of an algorithm
is not fully known in advance. We usually model this circumstance the following way: The input is slowly
revealed by the algorithm receiving requests from another party. It is then in some state, which we can think
of as the algorithm having prepared some memory for processing the input that is most expected to come
up next. The algorithm may then need to switch the state, process the request and iterate this procedure.

Receive
Request

Switch State
with Cost

Process
Request

Definition 2 ([2, pp. 75-76]). A Metrical Task System (MTS) is a tuple ((M, d), T), where (M, d) is a finite
metric space of cardinality N := |M|, the set of states, and T ⊆

(
R∞

≥0

)N is the set of tasks. If d(x, y) = 1
for any x, y ∈ M with x 6= y, then the MTS is called uniform.
Given a fixed order of the elements in M, any task τ ∈ T can also be interpreted as a map of form
{0, 1, ..., N − 1} → R∞

≥0, so we may write τ(x) for x ∈ M. The term τ(x) corresponds to the time to process
the task τ in the state x. We will now also omit the term T , when specifying an MTS.

τi
(xi−1 7→ xi)

with cost xi−1xi
τi(xi)

As we can see, the MTS model fits our description of how a system running an online algorithm behaves in
theory. To get acquainted with definition 2, we shall describe three examples.

1

Example 1 (The Ice Cream Problem [2, pp. 74-75]). Suppose we work at an ice cream shop, which offers
two flavors, vanilla (V) and strawberry (S). We can manually produce a gallon of vanilla ice cream at a cost
of 2 and of strawberry ice cream at a cost of 4. The shop has an ice cream automaton, which can produce
both flavors at half the cost each, but it can only produce gallons of one kind at a time (so either vanilla VM

or chocolate SM) and needs to switch its mode at a cost of 1. The question is when to change the mode of
the automaton to keep the cost low while serving customers. The following matrix captures these costs.

V S
VM 1 4
SM 2 2

The MTS modelling this problem would be composed of the space {VM , SM} (in this order) of states
with the metric d : (VM , VM) 7→ 0, (VM , SM) 7→ 1, (SM , VM) 7→ 1, (SM , SM) 7→ 0 and the set of tasks
T := {(1, 4), (2, 2)}. The MTS is uniform.

Example 2 (The Paging Problem [3, p. 124]). Suppose we have an operating system that utilizes paging to
implement memory management. We have a large, slow memory of N ∈ N, N ≥ 1 pages and a small, fast
memory of k ∈ N, 1 ≤ k ≤ N pages. We can model the possible states of the smaller memory with a metric
space M of

(
N
k

)
elements, representing which k pages are currently in the small memory, assuming that the

memory is filled at all times.

pi1
pi2
...
pik

p1

p2
...

p1000

p1001

p1002
...

p34005
...
pN

Copy

In the figure, p1, ..., pN denote the pages and i1, ..., ik ∈ N, 1 ≤ i1, ..., ik ≤ N denote pairwise different indices.
Denoting the states by S1, ..., S(Nk)

, a suitable metric is d(Si, Sj) := k− |Si ∩Sj |, for which we can verify the
properties of a metric, only the triangle inequality requires a case distinction. We now set T as an N -set,
for which every task τ is associated with a page p. As the task should output the page requested, we let

τ(Si) :=

{
0 p ∈ Si

∞ p /∈ Si

(1)

for any i ∈ N, 1 ≤ i ≤
(
N
k

)
to force a suitable online algorithm to switch the state to one which contains the

requested page. This MTS is not uniform for N > 3 and k > 1.

Example 3 (The k-Server Problem [2, pp. 87-88]). We are given a metric space M and k servers which reside
on one point of the space each. A request for the entire system arrives at one of the points in the space,
meaning that one of the servers needs to move to the point to serve the request. Wlog. we assume, that two
or more servers can sit at the same point.
A suitable formulation as an MTS would be to equip Mk with the metric assigning two configurations the
minimum distance the servers need to travel from one configuration starting to cover the same points in the
same weights as in the other configuration, also called the configuration distance of two configurations, i.e.
states. To each task τ we then have a point x ∈ M associated, s.t. τ(x1, ..., xk) = 0, iff x = xi for an i ∈ N,
1 ≤ i ≤ k. Otherwise τ(x1, ..., xk) = ∞.

2

M

Online Algorithms With the definition of an MTS, we can now especially formulate the concept of an
online algorithm in the MTS model, as well as the optimal algorithm and competitiveness. For the following
paragraphs, let M denote an MTS, x0 ∈ M an initial state and τ ∈ T n, n ∈ N, be a one-indexed sequence
of tasks.
Definition 3 ([2, p. 76]). Let x ∈ Mn be a one-indexed sequence of states. Set

cost(x0, τ, x) :=
n∑

i=1

xi−1xi + τi(xi)(2)

opt(x0, τ) := min
x′∈Mn

cost(x0, τ, x
′)(3)

as the cost of processing the task sequence τ under the state sequence x and the optimal cost respectively. Let
further T ∗ :=

⋃∞
m=1 T m. A (deterministic) online strategy/online algorithm for M is a map A : M×T ∗ →

M. We further set the cost of execution by A as
costA(x0, τ) := cost(x0, τ,A(x0, τ1)A(x0, τ1τ2)...A(x0, τ1τ2...τn))(4)

A is called c-competitive with initial function α : M → R, where c ∈ R, if for any x0 ∈ M and τ ∈ T ∗, we
have

costA(x0, τ) ≤ c opt(x0, τ) + α(x0)(5)
Furthermore, the value argminc∈R(A is c-competitive), if it exists, is called the competitive-ratio of A.
The definitions from the model correspond to the same definition of competitiveness as discussed in class,
which hints at the abstractions made being well-chosen. As mentioned, this is the definition for deterministic
online algorithms. At the end, we will mention a few different models.

The Work Function Algorithm In this part, we will give an optimal competitive algorithm for an arbi-
trary MTS with the competitive ratio only depending on N , the so-called Work Function Algorithm (WFA).
We first need to define what work functions are.
Definition 4 (Work Functions). The function

ω : M → R, x 7→ min(x1,...,xn−1)∈Mn−1 cost(x0, τ, (x0, x1, ..., xn−1, x))(6)
is called the work function for x0 and τ .
The work function describes the minimal cost for reaching a given state x after processing τ . The work
function can be computed using a dynamical program. Let ωi for any i ∈ N, 0 ≤ i ≤ n, denote the work
function of x0 and (τ1, ..., τi) computing the lowest costs for the first i tasks. Then

ω0(x) = x0x(7)
ωi+1(x) = min

x′∈M
ωi(x

′) + τi+1(x
′) + x′x(8)

We can verify the correctness through induction: The base formula for ω0 is clear. Then the lowest cost for
computing the value of ωi+1 is given by the above term and is also optimal by the induction assumption.
The work function and our ability to compute it now allows the formulation of the so-called Work Function
Algorithm. In the same manner as the formal definition we describe it as the function WFA : M×T ∗ → M.

3

The Work Function Algorithm (WFA) Let i ∈ N, 1 ≤ i ≤ n−1 and suppose the states x0, x1, ..., xi

have already been computed. Then the WFA chooses the next state by
xi+1 ∈ arg min

x∈M
ωi+1(x) + xix(†)

s.t. ωi+1(xi+1) = ωi(xi+1) + τi+1(xi+1)(�)

This algorithm was first suggested by Ricklin, based on results by Borodin, Linial and Saks [3, p. 123, p.
132]. A rough interpretation may be, that the algorithm chooses the next state by minimizing the cost to
process (τ1, ..., τi+1) and to move from xi to xi+1. The second condition also establishes, that in the state
xi+1, we process τi+1. It is not clear why it is optimal, nor why it is well-defined, which is the first question
we are going to tackle.

Theorem 4 ([3, pp. 132-133]). The WFA is well-defined.

Proof. As M is finite, there is always an element sufficing (†). We first prove the direction (≤) for any such
element and then prove the existence of one sufficing (≥) for (�).
(≤) Notice, that for any x ∈ M, we have from the definition of the work function, that

ωi+1(x)︸ ︷︷ ︸
Optimal cost for processing
(τ1, ..., τi+1) and ending in x.

≤ ωi(x) + τi+1(x)︸ ︷︷ ︸
Optimal cost for processing (τ1, ..., τi),

ending in x and then processing τi+1 there.

(9)

(≥) Let

x′ ∈ arg min
x∈M

ωi+1(x) + xix(10)

x∗ ∈ arg min
x∈M

ωi(x) + τi+1(x) + xx′(11)

These elements give the minimas from (†) and (8), where the latter is applied on x′. We claim

ωi+1(x
∗) + xix

∗ ≤ ωi+1(x
′) + xix

′(12)

For that, we have the three inequalities

ωi+1(x
∗) + x∗xi ≤ ωi(x

∗) + τi+1(x
∗) + x∗xi(13)

ωi(x
∗) + τi+1(x

∗) + x∗xi = ωi+1(x
′) + x∗xi − x∗x′(14)

x∗xi − x∗x′ ≤ x′xi(15)

We obtain (13) by taking (9) for x = x∗ and adding x∗xi. (14) is obtained by taking the statement in
(11) and adding x∗xi − x∗x′. (15) is then obtained by the triangle inequality of the metric. Combining all
three statements by following the equalities and inequalities from left to right, top to bottom, we obtain the
statement. By that, we first have that x∗ satisfies (†), as x′ minimizes the term involved, additionally giving
that our claim is an equality. (≥) now follows from

ωi+1(x
∗) + x∗xi

(1)
= ωi+1(x

′) + x′xi
(2)
= ωi(x

∗) + τi+1(x
∗) + x′x∗ + x′xi

(3)

≤ ωi(x
∗) + τi+1(x

∗) + x∗xi(16)

(1) Using that (12) is an equality.
(2) Due to (11).
(3) By the triangle inequality.

giving the statement. ■

We now analyze the competitiveness of the WFA. For that, we will require the following lemma.

Theorem 5 ([3, pp. 133-134]). For any i ∈ N, 0 ≤ i ≤ n, we have

costWFA(x0, (τ1, ..., τi)) +B0 ≤ Bi ≤ (2N − 1) opt(x0, (τ1, ..., τi)) + (2N − 2)µ(17)
4

where (x1, ..., xn) ∈ Mn is the sequence of states produced by the WFA and

µ := max
x,x′∈M

xx′, Bi := 2
∑

x∈M\{xi}

ωi(x) + ωi(xi)(18)

In other words, the WFA is (2N − 1)-competitive.

Proof. We start by proving the first inequality. By (†),

ωi+1(xi+1) + xixi+1 = min
x∈M

ωi+1(x) + xix ≤ ωi+1(xi) + xixi = ωi+1(xi)(19)

And by (�), ωi+1(xi+1)− ωi(xi+1) = τi+1(xi+1). Reordering the first result and plugging in the second, we
have

ωi+1(xi)− ωi(xi+1) ≥ xixi+1 + τi+1(xi+1)(20)

We claim Bi+1 −Bi ≥ ωi+1(xi)− ωi(xi+1). First, notice that ωi is monotonely increasing wrt. i, as by (8),
we have for any x ∈ M

ωi+1(x) = min
x′∈S

ωi(x
′) + τi+1(x

′) + x′x ≥ ωi(x)(21)

So

Bi+1 −Bi = 2

 ∑
x∈M\{xi,xi+1}

ωi+1(x)− ωi(x)︸ ︷︷ ︸
≥0

(22)

+ ωi+1(xi+1)− ωi(xi+1)︸ ︷︷ ︸
≥0

+ωi+1(xi)− ωi(xi)︸ ︷︷ ︸
≥0

+(ωi+1(xi)− ωi(xi+1))(23)

This gives the claim. Especially, we now have Bi+1 −Bi ≥ xixi+1 + τi+1(xi+1), giving the telescope sum

costWFA(x0, (τ1, ..., τi)) =

i∑
j=1

xj−1xj + τj(xj) ≤
i∑

j=1

Bj −Bj−1 = Bi −B0(24)

and by that giving the first inequality.
For the second inequality, observe from the definition, that ωi(x) = minx′∈M ωi(x

′)+x′x ≤ minx′∈M ωi(x
′)+

µ. There is further at least one end state giving the optimum cost, s.t. plugging that in gives

Bi = 2
∑

x∈M\{xi}

ωi(x) + ωi(xi) ≤ (2N − 2)(opt(x0, (τ1, ..., τi)) + µ) + opt(x0, (τ1, ..., τi))(25)

■

Lastly, we can establish that (2N − 1) is also the competitive ratio of the WFA, but we are going to omit
that here. The following theorem only presents this result for general deterministic online algorithms.

Theorem 6 ([3, pp. 128-132]). The competitive ratio of any deterministic online algorithm for general MTS
is lower bounded by (2N − 1).

One last remark: As we can observe, the WFA runs in time O(nN2). A runtime of O(nN2) is required
to compute the first n work functions, for which the algorithm needs to compute N values each taking
minimums over the N states. Each of the n algorithm states then requires checking all N values of a work
function.

5

Results on WFAs for Some Problems The following table gives an overview of results on the initial
examples, as well as the different versions of the k-server problem. The values cWFA and cBetter shall
denote the competitiveness of the associated WFA and some better known algorithms. We know the first
two examples already. Especially for the k-server problem however, there are multiple results on different
restrictions of the problem, illustrating the richness of that problem. Especially, the following conjecture,
still open after much effort, exist.

Conjecture 1 ([3, pp. 152-153]). There exists a k-competitive deterministic online algorithm for the k-server
algorithm over any metric space.

Problem cWFA cBetter
Ice Cream 3 7/6 (claim in exercise, [2, pp. 80-82])

Paging 2
(
N
k

)
− 1 k (tight, [2, pp. 54-56])

k-Server MTS WFA 2Nk − 1 See below
2-Server WFA 2 (tight, [2, pp. 87-89, p. 94]) None

k-Server WFA, k ≥ 3 2k − 1 ([2, pp. 92-93]) Open
k-Server WFA, |M| = k + 2 k (tight, [2, pp. 87-89, pp. 94-95]) None

Especially the example of paging shows how weak the WFA can be in comparison to other online algorithms,
but the generality still allows to prove the existence of a competitive algorithm for an any online algorithmic
problem, no matter how difficult, if it can be expressed as an MTS. Especially, in the case of algorithms for
the k-server problem, it can lead to conjectured nearly optimal algorithms.

References

[1] O. Forster, Analysis 2, isbn: 978-3-658-19410-9.
[2] G. Woeginger, Online Algorithms, isbn: 978-3-540-64917-4.
[3] A. Borodin, Online Computation and Competitive Analysis, isbn: 978-0-521-56392-5.

6

