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Abstract

This handout presents basic definitions and problems of the complexity class NP. It will then give a short
insight into the importance of P=NP and NP-completeness.

NTIME, The Class NP and Verifiers Following the polynomial time class for deterministic computa-
tion, this handout now introduces the same class for the concept of nondeterministic machines.

Remark 1. The nondeterministic definition of the Turing machine mainly differs in the state transitioning
function δ : Q× Γ→ P(Q× Γ× { L,N,R }).

Definition 1. In analogy to the class TIME, the class NTIME of f : N→ R+ is defined as:

NTIME(f(n)) := { L | There is a nondeterministic TM that decides L in O (f(n)) time for an input of size n }

There are two ways to introduce the class NP, both of which are equivalent (proof see resources):

• Through nondeterministic Turing machines (our approach)

• Through polynomial verifiers (an example is included in the following pages)

Definition 2. An algorithm V is called a verifier for a language L, if:

L = { w | ∃ c ∈ Σ∗ : V accepts 〈w, c〉 }

V is called a polynomial verifier, if it runs in polynomial time in terms of |w|. L is called polynomially
verifiable, if such a polynomial verifier exists. c is called certificate.

Example: For the PATH problem (see handout P), a verifier could take a directed graph, two nodes
and a sequence of edges as an input and check whether the edges match to a path between the nodes.

Machines Verifiers

Guess certificate

Use certificate as step description

Definition 3. The class NP is the class of languages computable by nondeterministic turing machines in
polynomial time.

NP :=
⋃
k∈N

NTIME(nk)

And from the equivalence of both concepts it follows:

Corollary 1. NP = { L | L has a polynomial time verifier }
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NP Problems First, some important terms:

• A hamiltonian path between two nodes is a directed path that visits
each node exactly once.

• n ∈ N is called composite, if it is the product of two numbers > 1.

• A clique is a subgraph of an undirected graph, where every two nodes
are connected. A k-clique is a clique of k nodes.

s t

Now consider the following problems:

Theorem 1. HAMPATH := { 〈G, s, t〉 | There is a hamiltonian path between s and t } ∈ NP

Proof. The proof is different from e.g. the PATH problem, since one can now nondeterministically guess a
possible path. The following algorithm performs this guess in polynomial time:

Input: 〈G, s, t〉, where G = (V,E) is a directed graph with nodes s, t.

Function:

1: Index the nodes from 1 to m := |V | (number of nodes). Nondeterministically write a list of m
numbers p1, ..., pm, where pi ∈ {1, ...,m}.

2: Check for repetitions. If any are found, reject.
3: Check if p1, pm correspond to the node indices of s, t. If not, reject.
4: for each 1 ≤ i ≤ m− 1 do
5: Check if (pi, pi+1) ∈ E. If not, reject.

6: Accept.

Stage 1 runs in polynomial time due to the nondeterministic choices performed. Stages 2-6 are simple
checks. �

Theorem 2. SUBSET-SUM := { 〈S, t〉 | S = {x1, ..., xn} ∧ ∃ {y1, ..., yk} ⊆ S :
∑
yi = t } ∈ NP

where {x1, ..., xn}, {y1, ..., yk} are multisets.

We give an alternative proof to demonstrate the concept of verifiers.

Proof (alternative). We give a polynomial time verifier V . The certificate is the subset.

Input: 〈〈S, t〉 , C〉 with S,C finite set of numbers and c number.

Function:

1: Test if
∑
ci = t with C = {c1, ..., ck}.

2: Test if C ⊆ S.
3: Accept if both pass, otherwise reject at one stage.

The checks can be implemented in polynomial time. �

Two additional, very similar, problems which have been proven to be in NP:

COMPOSITES = { 〈n〉 | n = pq with p, q > 1 natural numbers }

CLIQUE = { 〈G, k〉 | G is an undirected graph with a k-clique }
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P=NP Question, Polynomial Time Reduciblity We have observed that:

• P is the class of languages in which membership can be decided efficiently.

• NP is the class of languages in which membership can be verified efficiently.

Researchers have been unable to prove the existence of a single language in NP that is not in P. Important
questions are:

• With nondeterministic behavior, it seems brute-forcing can be avoided. Are there problems which are
inherently difficult to solve? Or are researchers not capable to find the polynomial time algorithms for
them?

• Even if one could prove that a specific language is in P and NP, how does that influence the P=NP
question?

The following concepts of polynomial time reducibility and then NP-completeness give some insight to these
questions.

Definition 4. A language A is polynomial time reducible to a language B, written A ≤p B, if there is a
polynomial time computable function f : Σ∗ → Σ∗, where for every w ∈ Σ∗:

w ∈ A↔ f(w) ∈ B

For our first example of polynomial time reduction consider the problem:

3SAT = { 〈φ〉 | φ is a satisfiable 3cnf-formula }

Theorem 3. 3SAT ≤p CLIQUE

Proof. We present the polynomial reduction by generating an undirected graph G out of the input 3cnf-
formula φ given.
Let

φ = (a1∨ b1∨ c1)∧ (a2∨ b2∨ c2)∧ ...∧ (ak ∨ bk ∨ ck)

be the input 3cnf-formula with exactly k clauses.
Each node is a literal from φ’s clauses. They are or-
ganized in literal groups, corresponding to the clauses,
called the triples t1, ..., tk. Two nodes are connected if
and only if they are not in the same triple and if they
are not contradictory, e.g. x and x.
An example of this construction for the 3cnf-formula

φ = (x1 ∨ x1 ∨ x2)∧ (x1 ∨ x2 ∨ x2)∧ (x2 ∨ x1 ∨ x2)

is illustrated on the right.

x1

x1

x2

x1 x2 x2

x2

x1

x2

We argue that φ is satisfiable, if and only if G has a k-clique.

(⇒) Suppose φ has a satisfying assignment. Then at least one literal is assigned to true in every clause of
φ. We choose exactly one each. These literals correspond to nodes of G. So by choosing one true literal in
every clause of φ, a corresponding node is also selected.

• Contrary literals cannot be present in the assignment, since otherwise one clause would be false.

• Each of the literals selected is in a seperate triple. Therefore we have selected exactly k nodes.
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Therefore these nodes form a k-clique, because these k literals form an undirected subgraph.

(⇐) Suppose G has a k-clique.
The clique must meet the conditions that no contradictory nodes are connected and each node is from a
different triple. Therefore, one can assign each variable in the clique a value so that the literal contained is
true. So each clause gets assigned true, what satisfies the formula.

By that, the reduction is complete. �

Although these problems are quite different, one can observe similar structures in both that allow the
reduction. Through reduction their complexities can be linked.

NP-Completeness It turns out, that the complexities of all NP problems are linked by some languages.

Definition 5. A language B is called NP-complete, if it satisfies two conditions:

1. B ∈ NP

2. A ≤p B for every language A ∈ NP, also called NP-hard

The first language proven to be NP-complete was the SAT problem:

SAT = { 〈φ〉 | φ has a satisfying assignment }

Fact 1 (Cook-Levin Theorem). SAT is NP-complete

Proof idea. Showing that SAT ∈ NP is done by nondeterministically choosing an assignment and checking
whether it satisfies the formula.
For the next part it must be shown that any language in NP is polynomial time reducible to SAT. This is
done by simulating the turing machine, that computes the language, using a boolean formula. If this formula
is satisfiable, the machine can reach an accepting state on the input. This is fundamentally easy to do, but
one has to keep track of a lot of details of the simulation, which is why the proof is not discussed here.

By modifying the proof of the Cook-Levin Theorem, one can show that 3SAT is NP-complete. NP-
completeness is relevant, because:

• By proving NP-completeness, one may not waste time searching for a polynomial algorithm that may
not exist.

• A lot of practical problems have been proven to be NP-complete.

Corollary 2. If B is NP-complete and B ∈ P, then P = NP.

This follows from the definition of NP-completeness: We can use the polynomial time reduction to compute
the equivalent problem for B, and then solve it using the polynomial time algorithm.

Corollary 3. If B is NP-complete and B ≤p C for C ∈ NP, then C is NP-complete.

This corollary is the reason, why reduction can be used to easily prove NP-completeness for a lot of languages.

Proof. Since C ∈ NP, it must be shown that any A is polynomially reducible to C. Since A ≤p B and
B ≤p C, the composition of the polynomial reduction functions lead to A ≤p C. The composition runtime
is the sum of two polynomials, so the runtime of the reduction is, again, polynomial. �

Corollary 4. CLIQUE is NP-complete.
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The New Landscape There are two possibilities.
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