
Handout

The Complexity Class P

Proseminar Theoretische Informatik WiSe 2020-21
Institut für Informatik
Freie Universität Berlin

valentinpi

8. Dezember 2020
(neueste Version)

Abstract

This handout gives an introduction to complexity theory and the complexity class P. It presents the
most important definitions, discusses why polynomial computation time is of practical interest and then
presents a handful of algorithmic problems and shows that they are in P.

Computability and Complexity Coming from the bachelor class ”Foundations of Theoretical Computer
Science”, complexity theory has not been formally introduced yet.

• Computability theory discusses the possibilities of computational models

• Complexity theory, however, discusses the efficiency of computation

Efficiency can be viewed from multiple perspectives. For instance, time, space (memory usage) or encoding
efficiency. Time might be the number of steps that the computational model has to take in order to decide
a problem. For instance the number of left or right moves on a TM.

Definition 1. Let f : N→ R+ be a function. The complexity class TIME of f is defined as follows:

TIME(f(n)) := { L | There is a deterministic TM that decides L in O (f(n)) time for an input of size n }

We only consider decidable problems, as Turing machines of semi-decidable problems may not halt. There
are problems that might require Turing machines running in exponential time or polynomial time.

• All versions of Turing machines (single-tape, multi-tape, multi-head, ...) are computationally, but also
polynomially equivalent

• Polynomial differences are important, but in some cases avoiding exponential growth outweighs these
differences, we merely focus on one part of the problem here

⇒ A polynomial time of e.g. n100 might not be practical, but focusing on finding polynomial solutions
for exponential problems has proven to be useful for further reduction

• Most exponential approaches to problem solving involve iterating through exponentially many tests
for a solution, also called brute-force

The Class P

Definition 2. P is the class of languages decidable in polynomial time on a deterministic single-tape TM.

P :=
⋃
k∈N

TIME(nk)

• P is invariant in terms of the Turing machine version which solves a problem in polynomial time

• Algorithms that utilize certain data structures (integers etc.) must have a representation that allows
for polynomial reading, editing time (polynomial time encodings)

1

The PATH Problem We now take a look at the problem PATH. Let G = (V,E) be a directed graph.
Every edge (u, v) ∈ E is an ordered touple representing a direction from one node to another. For two nodes
s, t, we want to find an algorithm which decides whether a path, i.e. a sequence of edges that connect these
points, exist.

PATH := { 〈G, s, t〉 | G is a directed graph and there is a path between nodes s and t }

s ?...

t

G

Figure 1: Small illustration of the PATH problem

Theorem 1. PATH ∈ P

Proof. To prove the theorem, we need to find an algorithm that decides PATH in polynomial time.

To brute-force, we can attempt to calculate every possible path inside of the graph and then check for one
that connects s and t. Any path is at most m := |V | nodes long. If all nodes are connected, as in complete
graphs, we can choose one of the m nodes for each of the m− 1 connections made. We do not always know
whether the path satisfies the search. Therefore the runtime of this algorithm is O (mm) and exponential.

Alternatively one can use a breadth-first-search (BFS) approach: We begin by placing a mark on the first
node s, then mark its neighbors, then continue with those neighbors’ neighbors and so on. By that, we
ultimately mark each node that we can reach from s. If there are no further possible marks to be made
our search is finished and we can check if t is marked, which leads to the following Turing machine M that
decides PATH:

Input: 〈G, s, t〉, where G is a directed graph with nodes s, t.

Function:

1: Mark s
2: while nodes got marked do
3: Search all edges in E. If an edge (u, v) is found with u marked and v not marked, mark v.

Step 1 runs in O (1) time. The loop of 2 and 3 runs in O (m) time, since we can only mark as many times
as we have nodes. For implementations, efficient data structures can store unmarked nodes and edges and
thereby decrease runtime, but that is of no interest here. The runtime is O (m+ 2), which is a polynomial
runtime and therefore PATH ∈ P. �

As a practical example, consider BFS for finding a route between two points in a city.

2

Relatively Prime Integers If two natural integers have the greatest common divisor (GCD) 1, they are
called relatively prime. This leads us to the next algorithmic problem.

RELPRIME := { 〈x, y〉 | x and y are relatively prime }

Theorem 2. RELPRIME ∈ P

Proof. We can try to compute all possible divisors of x and y. If the numbers are encoded in binary, for
instance, with the MSB (Most Significant Bit) of k, we would need to compute the divisibility test for at
least 2k values. This also applies to any other base b. The brute-force approach is exponential and therefore
not feasible.

The Euclidian Algorithm gives us a polynomial solution to this problem. The correctness will not be proven
here, but the algorithm complexity will be analyzed. The idea is that for any x, y ∈ N it holds that
gcd (x, y) = gcd (y, x mod y) and when y reaches zero, the GCD is calculated. Using the euclidian algorithm,
we directly construct a Turing machine M which decides RELPRIME:

Input: 〈x, y〉, where x, y ∈ N.

Function:

1: while y > 0 do
2: x← x mod y
3: Swap x and y

4: If x = 1, accept. Otherwise, reject.

Step 4 runs in O (1) time. For the loop in 1 with steps 2, 3, we are going to show that each iteration cuts
the value of x in at least a half. If x < y initially, the algorithm essentially swaps x and y, so we start off
with x > y after this possible initial swap. After 2 is executed, it holds x < y and after the swap in 3 x > y
again. We take a look at x

2 :
First case: x

2 ≥ y. Then by the laws of the modulo operation, x mod y < y ≤ x
2 and x is cut by at least half.

Second case: x
2 < y. Then either x = y or 2y > x > y. Either way x mod y = x − y per application of the

modulo, but also x− y < x
2 . Therefore, the value of x gets cut by at least half.

Since x and y get swapped in each iteration, both of them get reduced by at least half every time. It
is not important which of the variables gets cut first and by that the maximum number of iterations is
min (2 log2 x, 2 log2 y), which is polynomial due to O (n) being an upper bound of these complexities. �

14

9

9

5
4

5

4

1 1

1

18

12

12

6 6

6

Figure 2: Rectangle visualisation of the Euclidian algorithm for gcd (14, 9) and gcd (18, 12)

3

Context-Free Languages It has been shown that every context free language is decidable (CYK-algorithm).
The following analysis shows that due to this method all of them are also in P.

Theorem 3. Every context-free language L ∈ CFL is in P.

Proof. Let G be a CNF grammar (Chomsky Normal Form) for L with variables V and start variable S ∈ V .
G only consists of productions in the form A → a,A → BC with S → ε allowed as an exception case. We
use the CYK algorithm. The idea is to setup a table of grammar variables in the form factor n × n. If
w = σ1...σn 6= ε is the word, then each entry holds table(i, j) = {A ∈ V |A→∗ σi...σj}. So if S ∈ table(1, n),
the word is derivable from G.
The following Turing machine for L decides it in polynomial time using the CYK algorithm:

Input: w ∈ Σ∗, for w 6= ε write w = σ1σ2...σn.

Function:

1: For w = ε, if S → ε is production, accept. Otherwise, reject.
2: for i = 1 to n do
3: for each variable A do
4: If A→ σi is a rule, place A in table(i, i).

5: for l = 2 to n do . Substring length
6: for i = 1 to n− l + 1 do . Starting position
7: j ← i+ l − 1 . End position
8: for k = i to j − 1 do . Split position
9: for each rule A→ BC do

10: If B ∈ table(i, k) and C ∈ table(k + 1, j), put A in table(i, j).

11: If S ∈ table(1, n), accept. Else, reject.

Steps 1 and 11 run in O (1) time. Let v = |V | be the number of variables, then the steps 2, 3, 4 run in
nv ∈ O (n) time, since v is a fixed constant for G. Stage 5 runs n− 1 ∈ O (n) times, stages 6 and 7 also, as
well as stages 8-10. Stages 9-10 however, run v times. We conclude a runtime of O (n3), since these loops
are nested. Therefore the runtime is O (n3), which is polynomial. �

→∗

A

σ1 σ2 σ3 σ4 σ5 σ6

Figure 3: table and the concept of the CYK subproblems, n = 6 for illustration

4

Conclusion The landscape of decidable languages has changed since the last time we saw a diagram of it.
This sketch shows the new classes and problems.

Decidable

P

PATH
RELPRIME

CFL

Figure 4: The landscape of decidable languages by now

References

[1] Michael Sipser. Introduction to the Theory of Computation, Third Edition. Cengage Learning, 2012.

[2] David Wees. Visualizing euclid’s algorithm. https://www.geogebra.org/m/ztbesvsd, 11.11.2020, 21:30
(last visited).

All the illustrations were made by myself using LaTex/Tikz.
The webpage I linked was inspiration for the GCD visualisation.

5

https://www.geogebra.org/m/ztbesvsd

