Handout
The Class PSPACE and Game Theory

Proseminar Theoretische Informatik WiSe 2020-21
Institut fiir Informatik
Freie Universitéit Berlin

valentinpi

5. Januar 2021
(neueste Version)

Abstract

This handout presents the complexity class PSPACE. It presents the most important definitions in the
context of the language hierarchy after the P and NP presentations. It then presents its applications in
the formula game and the geography game.

Space Complexity and the Class PSPACE One can analyze efficiency in at least three different ways:
Time, space, encoding efficiency. Looking at space efficiency leads to the first complexity classes here:

Definition 1. Let f: N — R™ be a function. The complexity classes SPACE and NSPACE of f are:

SPACE(f(n)) :={ L | L is decided by a deterministic turing machine using O(f(n)) space }
NSPACE(f(n)) = { L | L is decided by a nondeterministic turing machine using O(f(n)) space }

Instead of time, to analyze whether problems are in these classes, one has to consider how much space, i.e.
memory or tape cells of a TM, an algorithm uses. As you can see, these definitions are analogous to the ones
for TIME and NTIME.

Definition 2. In analogy to the classes P and NP, PSPACE and NPSPACE are defined as:

PSPACE := | | SPACE(n*) ~ NPSPACE := |] NSPACE(n*)
keN keN

One very important and surprising result of complexity theory is the following: The researcher Savitch showed
that any nondeterministic polynomial space bounded machine can be simulated by such a deterministic
machine in about quadratic more space. Since PSPACE C NPSPACE per definition:

Fact 1 (Corollary from Savitchs Theorem). PSPACE = NPSPACE
As in NP-completeness, completeness is also defined for PSPACE-Problems:
Definition 3. A language B is PSPACE-complete, if:

1. B € PSPACE

2. A<, B for all A € PSPACE, also called PSPACE-hard

e Complete problems exist for many complexity classes, not just NP

e <, denotes polynomial time reducibility, not space reducibility. Time is also a bound for the space
used, since a machine can not occupy more space than it can move its read/write head.

Fact 2. The following holds:

P C NP C PSPACE = NPSPACE C EXPTIME = |_J TIME (2’*) , P # EXPTIME
keN

Quantified Boolean Formulas The following is a generalization of the SAT-Problem with quantifiers.
Some important terms:

e Any boolean formula can be put into prenex normal form: Quantifiers appear first and then the boolean
formula without quantifiers. General form: Q;21Qy%2...Q,, 2, : ¢ with Qq,...,Q,, € {V,3}

An example:
¢ = Fr1Vao,z3: (x1 V)V xs is in prenex normal form

bounded variables scope

e Such a formula is fully quantified, if each variable of the formula appears in the scope of a quantifier,
like in the formula above.

e Fully quantified formulas are either true or false, since they are statements themselves.
This generalization of SAT is called TBQF: TQBF = { (¢) | ¢ is a true fully quantified boolean formula }
Theorem 1. TQBF is PSPACE-complete.

Proof. TQBF € PSPACE can be shown by giving a recursive algorithm. Since all the quantifiers are first
and the variables can only get assigned to a finite number of values - true or false -, our algorithm can check
all possible combinations of variable assignments:

Input: (@), where ¢ is a fully quantified boolean formula.

Function:
1: if ¢ = ¢ has no quantifiers then
2: 1) has no quantifiers, only constants. Evaluate), accept or reject depending on result.
else if ¢ has form Jz: ¢ (¢ is remaining term) then
Recursive call on 1, once with = substituted with false, once substituted with true.
If either accepts, accept. Otherwise, reject.
else ¢ has form Vz: ¢
Recursive call on 1, once with = substituted with false, once substituted with true.
If both accept, accept. Otherwise, reject.

The additional space the algorithm uses is limited by the number of recursions. Those can be at most n with
n being the number of variables that appear in the formula. Therefore the algorithm runs in O(n) space,
which is polynomial.

For the PSPACE-hardness we will only consider the proof idea here. The first idea would be, since this is
a generalization of the SAT-problem, to consider the proof from Cook-Levin and simulate execution of the
polynomial space bounded TM of some A € PSPACE using a fully quantified boolean formula.

However, such a TM for A could run in exponential time! So the reduction may produce a simulation, the
quantified boolean formula, that is of exponential size. A polynomial time reduction can not produce an
exponential sized result.

Using techniques from the Theorem of Savitch, one can use universal quantifiers V to divide the formula
for the TM into subformulas. So the idea is to use another technique to make the previous formula much
smaller. |

To prove PSPACE-completeness for more problems using TQBF, one can use this corollary from NP-
completeness:

Corollary 1. If B is PSPACE-complete and B <, C for C' € PSPACE, then C is PSPACE-complete.

Game Theory and the FORMULA-GAME Problem Here, a game is a competition between two
opposing players, in which both want to achieve some goal under specific rules. There are casual games like
chess and go, but also more serious games, which model war or societal conflict.

Fully quantified formulas decode games. One may recall this analogy from the logic lectures. Player A (All)
and player E (Ezists) take turns choosing assignments for the universally (V) and existentially (3) quantified
variables of such a formula ¢ from left to right. If the formula evaluates to false, A wins. Otherwise, E
wins. We call this game the formula game. One of these players has a winning strategy, if assignments can
be chosen so that that player wins no matter what is chosen afterwards.

Example: dz,Vzy,z3: 1 V 2o A z3 - If E chooses 21 = 1, the formula will evaluate to true and E wins, no
matter what A chooses.

We define the following problem:
FORMULA-GAME = { (¢) | Player E has a winning strategy in the formula game on ¢ }

The following corollary shows that, even though the problems TQBF and FORMULA-GAME are seemingly
different - one is about fully quantified boolean formulas and one is about gaming - they are actually the
same.

Corollary 2. FORMULA-GAME = TQBF and FORMULA-GAME is PSPACE-complete.

Reason. (C) If player E has a winning strategy for the formula game associated with a fully quantified boolean
formula ¢, then, no matter how A chooses the variables bound to universal quantifiers to be assigned, E will
win with the game with the strategy. Similarly, these assignments correspond to variable assignments for
the existential quantifiers, and the fact that A can not prevent the loss means that the statement is true for
any assignment of the universal quantifiers. Therefore, ¢ must be true, if E has such a strategy.

(D) Similarly, if ¢ is a true formula, player E can win by using the variable assignments for variables bound
to existential quantifiers as the winning strategy. The problems are identical.

The Game Geography and the GG Problem Another game is geography. In geography, two players
I and II take turns naming cities from all around the world. The first city is chosen in advance. Player I
must then choose a city that starts with the last letter of the first city, no repetitions allowed. Then player
IT chooses a next city and so on. If one player runs out of city names, the other player wins.

Example: A game starts with Paris. Player I chooses St. Malo, since it starts with S. Player II chooses
Orleans, then I chooses Strasbourg. Continue with Grenoble and Epernay. Player II, in this case, does not
know any city starting with Y, so I has won this game.

renavre
® Rouen Reims
0
— PARIS °
Ba.fy [} Epernay
T

St Malo

LYALCIVIDUUNG

Nanc
a.y

°
Strasbgurg

.A“gers @ Orleans — I
FO Nantes @ Tours 1 o Dijon
F RA N C E Lyon o

Aix-les-Bains ®

Grenoble ®
Bordeaux

Figure 1: A game of geography on the map of France.!

Thttps://i.pinimg.com/originals/f6/e6/c5/f6e6c586d8b62dc6e66fa2e85dad2ad8. png, last accessed: 27.12.2020, 22:30

https://i.pinimg.com/originals/f6/e6/c5/f6e6c586d8b62dc6e66fa2e85dad2ad8.png

This example only used French cities, but in geography one generally talks about cities from all around the
world. The cities named induce a directed graph over the map of the world.
One can generalize this problem for any directed graph with a start node, called generalized geography (GG):

GG = { (G, s) | Player I has a winning strategy for the GG game played on G, starting from s }
Theorem 2. GG is PSPACE-complete.

Proof. The proof uses the Corollary 1. First, show that GG € PSPACE, then show FORMULA-GAME <,
GG. The following algorithm decides GG:

Input: (G,s), where G is a directed graph and s a node from G.

Function:

. if degs = 0 (the degree deg is the number of neighbors of a node) then
Reject, since Player I instantly looses.

: For the outgoing neighbors of s, s1, ..., i, do a recursive call on (G’,s;), i € {1,...,k}.
: If all accept, reject, since the current player would lose. Otherwise, accept, since the opposing
player gets stuck.

1
2
3: Remove s and its edges from G for a new graph G’.
4
5

During execution, the algorithm implicitely switches perspective from player I to II and vice versa when it
recurses. When we reject, the current player loses due to the first if-statement. When we accept, we win.
About the complexity: The machine only needs to store each node when it recurses into the neighbors.
Therefore the space complexity is O(n) with n being the number of nodes, which is polynomial.

Now for the second statement. Let
¢ = Jr1Varodrs... 3,1 Y

be a formula game with v in conjunctive normal form.
The quantifiers start and end with existential ones and 2,
strictly alternate. If not, insert quantifiers for dummy
variables, which are not used in 1.

An example for the constructed geography game is
demonstrated on the right side. For each variable, a
diamond-shaped structure is introduced, with which
the players implicitely assign truth values to variables. 22
Using dummy nodes between each diamond, the play-
ers take their turns choosing. When z, has been as-
signed by player I, an assignment of all variables was
made. Player II reaches the node ¢, which represents
a choice between the clauses of the formula.

For each clause and each literal, we introduce nodes.
(=) If the player I has a winning strategy for ¢, player
IT can choose any clause of ¢y, cs, ..., ¢, Player I then
must choose one true literal from the clause, which ex-
ists, since the formula is satisfied. The literal only has
an edge back to the choice made, but it has already
been made, since the literal is true. Player II is stuck
and player I wins. If player II has a winning strategy,
one node was not visited and II can choose the literal
for it. Player I would then get stuck. (<) The assign-
ment made directly corresponds to a winning strategy
in the formula game, which completes the reduction.

Another New Landscape With the introduction of PSPACE, NPSPACE but also EXPTIME the land-
scape has become larger. Assuming the relations are proper (real subsets, P # NP, etc.), from Fact 2 one
gets:

EXPTIME

PSPACE = NPSPACE

PSPACE-complete

TQBF =
FORMULA-GAME

GG

All the illustrations were made by myself using LaTex/Tikz.

