Stuff

Small Geometric Puzzle

August 7, 2021 (newest version)
valentinpi

Abstract

A small geometric puzzle, solved analytically.

Problem Statement Consider the following geometric problem in \mathbb{R}^{2} :

Where the circle is tangent to the line containing the hypothenuse of the triangle. What is the value of r ? It is clear that the circle is centered at $(0, r)$ as it intersects with $(0,0)$. I will give an analytic solution to this problem. r is unknown, but let it be fixed. We model the above halfcircle by constructing a function f from the circle equation in $[0, r]$:

$$
\sqrt{x^{2}+(y-r)^{2}}=r \Longrightarrow f(x)=\sqrt{r^{2}-x^{2}}+r
$$

The hypothenuse can be modelled by the equation $-x+1$, thus we want to obtain an r such that there is a single intersection of that curve in this interval:

$$
\sqrt{r^{2}-x^{2}}+r=-x+1 \Longrightarrow 0=x^{2}+(r-1) x+\left(-r+\frac{1}{2}\right)
$$

We solve after x :

$$
x_{1,2}=\frac{1-r}{2} \pm \sqrt{\frac{(r-1)^{2}}{4}+r-\frac{1}{2}}
$$

For obtaining a single solution, the latter term must be zero. Thus continuing with r :

$$
\frac{(r-1)^{2}}{4}+r-\frac{1}{2}=0 \Longrightarrow r^{2}+2 r-1=0
$$

Solving for r obtains two solutions $-1 \pm \sqrt{2}$, of which only the positive one is of interest. Thus, the solution is $r=-1+\sqrt{2}$.

