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Consider the following question: Given a finite set of 1-qubit-gates, how fast can we approximate an arbitrary
1-qubit-gate? A fundamental result is that a fast approximation is generally possible, as is established by
the Solovay-Kitaev Theorem. In this note, we study a part of the proof following the version from Nielsen
and Chuang and make some of the arguments more precise.

The first reduction to make is to only consider SU(2). Due to the decomposition theorem of operators in U(2)
into products of operators from SU(2) [1, p. 176], this suffices. We shall recall that approximating general
quantum gates is a hard problem [1, pp. 198-200], as it can be shown that there are multi-qubit-gates, for
which the complexity of approximation is exponentially lower bounded by the number of qubits. Since we
are restricting ourselves to one qubit only however, this fact does not pose an issue.

Let G ⊆ SU(2) be a finite set, closed wrt. inverses meaning adjoints, s.t. 〈G〉 is dense in SU(2) wrt. the trace
distance dtr(A,B) = tr(|A − B|) = tr(

√
(A−B)†(A−B)). Generally we may include E2 into G to have a

subgroup, but it suffices to leave it. Using the trace distance suffices as all norms in finite-dimensional spaces
are equivalent. Let Sε := dtr(·, E2)

−1([0, ε]).
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Lemma 1 ([1, pp. 619-623]). There exists a universal constant ε0 ∈ R>0, independent of G, s.t. for any
ε ∈ R, ε ≤ ε0, if G·ℓ with ℓ ∈ N is an ε2-net for Sε ⊆ SU(2), then G·(5ℓ) is a Cε3-net for S√

Cε3 , where
C ∈ R>1, C ∈ O(1).
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7→ 7→ · · ·
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C(

√
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Theorem 2 (Solovay-Kitaev Theorem [1, pp. 618-620]). For any ε ∈ R>0, there exists an ℓ ∈ N, ℓ ∈
O(logc2(1/(C2ε))) with c ∈ R>0, c ∈ O(1) a universal constant, s.t. G·ℓ is an ε-net of SU(2).

Proof. The first step is to prove that we can take an initial net and make it successively smaller with
exponential speed. Take an arbitrary ε′0 ∈ (0, 1) with just ε′0 ≤ ε0 for now. 〈G〉 is dense in SU(2), so there
is an ε′20 -net of Sε′0

by the following topological argument.
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Since the determinant map det : C2×2 → C is continuous as a polynomial and SU(2) = det−1({1}),
SU(2) is closed in C2×2. The matrices being unitary gives the boundedness of SU(2) ⊆ C2×2 ∼= R8.
Applying the Heine-Borel theorem gives the compactness of SU(2). To obtain an ε′20 -net for SU(2)

and thus Sε′0
, choose for any U ∈ SU(2) a V ℓU

U ∈ G·ℓU ⊆ 〈G〉 with ℓU ∈ N, s.t. ‖U − V ℓU
U ‖ < ε′20 .

Then {V ℓU
U }U∈SU(2) is an open cover, so choose a finite cover {V ℓ1

1 , ..., V ℓn
n } with n ∈ N≥1 and select

ℓ0 := max{ℓ1, ..., ℓn}. We can do this analogously for Sε′0 to obtain a different ℓ0 value and take the
maximum.

Apply the theorem on G·ℓ0 to obtain a Cε′30 -net of S√
Cε′30

. Iterating k-times, k ∈ N≥1, we obtain some εk,
which corresponds to applying the map ε 7→ C1/2ε3/2 exactly k times on ε′0. Looking at the exponents and
considering ε′0 = C0ε′10 , we can alternatively consider the exponents as pairs and look at k applications of
the map (x, y) 7→ (1/2 + (3/2)x, (3/2)y) with initial values (x, y) = (0, 1). For the first component we thus
have the geometric sum
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for which the derivation may be visualized the following way. In other words, εk = (Cε′0)
((3/2)k)/C and

(
1
2 + 3

2

)
·(
1
2 + 3

2

)
·(
1
2 + 3

2

)
·(
1
2 + 3

2

)
·(
1
2 + 3

2

)
·
x

G·2kℓ0 is a ε2k-net of Sεk . Now assume Cε′0 ∈ (0, 1) to make the nets smaller with each increase of k. Thus
εk →k→∞ 0 under exponential decline. For the following, we want ε2k < εk+1 and the direct computation
gives ε′0 ∈ (0, C) as a sufficient condition, so wlog. assume that.

We now find an ℓ as claimed by using the construction of nets from above. Let U ∈ SU(2) be arbitrary, but
fixed and take a ε′20 -approximation of U , denoted U0 ∈ G·ℓ0 . Set V0 := UU †

0 . Then

dtr(V0, E2) = tr |(U − U0)U
†
0 | = tr |U0(U − U0)U

†
0 | = tr |U − U0| = dtr(U,U0) ≤ ε20 < ε1(3)

Establishing V0 ∈ Sε1 . By construction, G·(5ℓ0) is a ε21-net of Sε1 , so take an ε21-approximation U1 ∈ G·(5ℓ0) of
V0 and set V1 := V0U

†
1 . The same argument as before gives dtr(V1, E2) = dtr(U,U1U0) ≤ ε21 < ε2. We iterate

this procedure to obtain for any k ∈ N≥1 a unitary UkUk−1...U0 with Ui ∈ G·(5iℓ0) for every i ∈ [0, k]N, which
is a ε2k-approximation of U .
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We used the following properties of the trace from [1, p. 75] here: Consider that the trace tr is
additive and cyclic, in the sense that

tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA)(4)
for any A,B ∈ Cn×n, n ∈ N≥1. Thus the trace is perserved under unitary transformations, meaning
that for any U ∈ U(n),

tr
(
UAU †) = tr

(
U†UA

)
= tr(A)(5)

is fulfilled.

We require a total of
∑k

i=0 5
iℓ0 = 5k+1−1

4 ℓ0 < 5/4 · 5kℓ0 gates. To approximate with a precision of ε, we use
the Ansatz ε2k < ε and conclude (
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(6)

where we wlog. assume C2ε ∈ (0, 1). Set c := log3/2(5) = log2(5)/ log2(3/2) and obtain a gate count of

5

4
5kℓ0 =

5

4

(
3

2

)ck

ℓ0 ≤ 5

4
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2c
logc2(C2ε)

logc2(Cε′0)
ℓ0 ∈ Θ(logc2(1/(C2ε)))(7)

where we omit any rounding to a next number k sufficing the construction, proving the Solovay-Kitaev
Theorem. ■
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